Abstract
The deposition of amyloid β-protein (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We previously found that the ganglioside-enriched microdomains (ganglioside clusters) in presynaptic neuronal membranes play a key role in the initiation of the Aβ assembly process. However, not all ganglioside clusters accelerate Aβ assembly. In the present study, we directly observed a spherical Aβ in an atomic force microscopic study on the morphology of a reconstituted lipid bilayer composed of lipids that were extracted from a detergent-resistant membrane microdomain (DRM) fraction of synaptosomes prepared from aged mouse brain. The Aβ assembly was generated on a distinctive GM1 domain, which was characterized as the Aβ-sensitive ganglioside nanocluster (ASIGN). By using an artificial GM1 cluster-binding peptide, ASIGN was found to have a high density of GM1; therefore, there would be a critical density of GM1 in nanoclusters to induce Aβ binding and assembly. These results suggest that ganglioside-bound Aβ (GAβ), which acts as an endogenous seed for Aβ fibril formation in AD brains, is generated on ASIGN on synaptosomal membranes.
Original language | English |
---|---|
Pages (from-to) | 2258-2264 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 29 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2013 Feb 19 |
ASJC Scopus subject areas
- Materials Science(all)
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry