Design and synthesis of 8-hydroxyquinoline-based radioprotective agents

Shinya Ariyasu, Akiko Sawa, Akinori Morita, Kengo Hanaya, Misato Hoshi, Ippei Takahashi, Bing Wang, Shin Aoki

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

In radiation therapy, adverse side effects are often induced due to the excessive cell death that occurs in radiosensitive normal cells. The radiation-induced cell death of normal cells is caused, at least in part, by apoptosis, which undergoes via activation of p53 and increase in the p53 protein, a zinc-containing transcriptional factor, in response to cellular damage. Therefore, radioprotective drugs that can protect normal cells from radiation and thus suppress adverse side effects would be highly desirable. We report herein on the radioprotective activity of 8-hydroxyquinoline (8HQ) derivatives that were initially designed so as to interact with the Zn 2+ in p53. Indeed, the 5,7-bis(methylaminosulfonyl)-8HQ and 8-methoxyquinoline derivatives considerably protected MOLT-4 cells against γ-ray radiation (10 Gy), accompanied by a low cytotoxicity. However, mechanistic studies revealed that the interaction of these drugs with p53 is weak and the mechanism for inhibiting apoptosis appears to be different from that of previously reported radioprotectors such as bispicen, which inhibits apoptosis via the denaturation of p53 as well as by blocking both transcription-dependent and -independent apoptotic pathways.

Original languageEnglish
Pages (from-to)3891-3905
Number of pages15
JournalBioorganic and Medicinal Chemistry
Volume22
Issue number15
DOIs
Publication statusPublished - 2014 Aug 1
Externally publishedYes

Keywords

  • 8-Hydroxyquinoline
  • Mechanistic study
  • Radioprotector

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Medicine
  • Molecular Biology
  • Pharmaceutical Science
  • Drug Discovery
  • Clinical Biochemistry
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Design and synthesis of 8-hydroxyquinoline-based radioprotective agents'. Together they form a unique fingerprint.

Cite this