TY - JOUR
T1 - Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode
AU - Suzuki, Koji
AU - Sato, Kazunari
AU - Hisamoto, Hideaki
AU - Siswanta, Dwi
AU - Hayashi, Kazuo
AU - Kasahara, Noriko
AU - Watanabe, Kazuhiko
AU - Yamamoto, Noriko
AU - Sasakura, Hideshi
PY - 1996/1/1
Y1 - 1996/1/1
N2 - To develop an ionophore that is highly selective for sodium for use in an ion-selective electrode, we propose a model based on 16-crown-5 which has a cavity just the size of Na+ and has a "block" subunit to prevent complex formation with ions larger than Na+. Based on this molecular model, eight kinds of 16-crown-5 derivatives have been synthesized, and their structural ion selectivity has been evaluated in detail. The 16-crown-5 derivatives having two bulky "block" subunits showed high Na+ selectivity relative to K+. In particular, the derivative with two decalino subunits (DD16C5) exhibited the highest Na+ selectivity of all the ionophores examined. When a phosphate ester-type membrane plasticizer, tris(ethyl-hexyl) phosphate, was used as the membrane solvent for the ion-sensing membrane based on pory(vinyl chloride), the electrode using DD16C5 exhibited a Na+ selectivity of over 1000 times relative to alkali metal and alkaline earth metal ions, including K+, which is the most serious interferant The evaluation of the relationship between the ionophore chemical structures and the ion-selective features contributes to the host-guest chemistry to give a highly selective ionophore for an alkali metal ion.
AB - To develop an ionophore that is highly selective for sodium for use in an ion-selective electrode, we propose a model based on 16-crown-5 which has a cavity just the size of Na+ and has a "block" subunit to prevent complex formation with ions larger than Na+. Based on this molecular model, eight kinds of 16-crown-5 derivatives have been synthesized, and their structural ion selectivity has been evaluated in detail. The 16-crown-5 derivatives having two bulky "block" subunits showed high Na+ selectivity relative to K+. In particular, the derivative with two decalino subunits (DD16C5) exhibited the highest Na+ selectivity of all the ionophores examined. When a phosphate ester-type membrane plasticizer, tris(ethyl-hexyl) phosphate, was used as the membrane solvent for the ion-sensing membrane based on pory(vinyl chloride), the electrode using DD16C5 exhibited a Na+ selectivity of over 1000 times relative to alkali metal and alkaline earth metal ions, including K+, which is the most serious interferant The evaluation of the relationship between the ionophore chemical structures and the ion-selective features contributes to the host-guest chemistry to give a highly selective ionophore for an alkali metal ion.
UR - http://www.scopus.com/inward/record.url?scp=0001674249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001674249&partnerID=8YFLogxK
U2 - 10.1021/ac950773j
DO - 10.1021/ac950773j
M3 - Article
C2 - 21619237
AN - SCOPUS:0001674249
SN - 0003-2700
VL - 68
SP - 208
EP - 215
JO - Industrial And Engineering Chemistry Analytical Edition
JF - Industrial And Engineering Chemistry Analytical Edition
IS - 1
ER -