TY - JOUR
T1 - Detecting hand joint ankylosis and subluxation in radiographic images using deep learning
T2 - A step in the development of an automatic radiographic scoring system for joint destruction
AU - Izumi, Keisuke
AU - Suzuki, Kanata
AU - Hashimoto, Masahiro
AU - Endoh, Toshio
AU - Doi, Kentaro
AU - Iwai, Yuki
AU - Jinzaki, Masahiro
AU - Ko, Shigeru
AU - Takeuchi, Tsutomu
AU - Kaneko, Yuko
N1 - Funding Information:
JSPS (Grant-in-Aid for Early-Career Scientists, 19K17894, Dr. Keisuke Izumi) & Fujitsu. Ltd. (salaries of KS, TE, KD, and YI).
Publisher Copyright:
© 2023 Izumi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2023/2
Y1 - 2023/2
N2 - We propose a wrist joint subluxation/ankylosis classification model for an automatic radiographic scoring system for X-ray images. In managing rheumatoid arthritis, the evaluation of joint destruction is important. The modified total Sharp score (mTSS), which is conventionally used to evaluate joint destruction of the hands and feet, should ideally be automated because the required time depends on the skill of the evaluator, and there is variability between evaluators. Since joint subluxation and ankylosis are given a large score in mTSS, we aimed to estimate subluxation and ankylosis using a deep neural network as a first step in developing an automatic radiographic scoring system for joint destruction. We randomly extracted 216 hand X-ray images from an electronic medical record system for the learning experiments. These images were acquired from patients who visited the rheumatology department of Keio University Hospital in 2015. Using our newly developed annotation tool, well-trained rheumatologists and radiologists labeled the mTSS to the wrist, metacarpal phalangeal joints, and proximal interphalangeal joints included in the images. We identified 21 X-ray images containing one or more subluxation joints and 42 X-ray images with ankylosis. To predict subluxation/ankylosis, we conducted five-fold cross-validation with deep neural network models: AlexNet, ResNet, DenseNet, and Vision Transformer. The best performance on wrist subluxation/ankylosis classification was as follows: accuracy, precision, recall, F1 value, and AUC were 0.97±0.01/0.89±0.04, 0.92±0.12/0.77±0.15, 0.77±0.16/0.71 ±0.13, 0.82±0.11/0.72±0.09, and 0.92±0.08/0.85±0.07, respectively. The classification model based on a deep neural network was trained with a relatively small dataset; however, it showed good accuracy. In conclusion, we provided data collection and model training schemes for mTSS prediction and showed an important contribution to building an automated scoring system.
AB - We propose a wrist joint subluxation/ankylosis classification model for an automatic radiographic scoring system for X-ray images. In managing rheumatoid arthritis, the evaluation of joint destruction is important. The modified total Sharp score (mTSS), which is conventionally used to evaluate joint destruction of the hands and feet, should ideally be automated because the required time depends on the skill of the evaluator, and there is variability between evaluators. Since joint subluxation and ankylosis are given a large score in mTSS, we aimed to estimate subluxation and ankylosis using a deep neural network as a first step in developing an automatic radiographic scoring system for joint destruction. We randomly extracted 216 hand X-ray images from an electronic medical record system for the learning experiments. These images were acquired from patients who visited the rheumatology department of Keio University Hospital in 2015. Using our newly developed annotation tool, well-trained rheumatologists and radiologists labeled the mTSS to the wrist, metacarpal phalangeal joints, and proximal interphalangeal joints included in the images. We identified 21 X-ray images containing one or more subluxation joints and 42 X-ray images with ankylosis. To predict subluxation/ankylosis, we conducted five-fold cross-validation with deep neural network models: AlexNet, ResNet, DenseNet, and Vision Transformer. The best performance on wrist subluxation/ankylosis classification was as follows: accuracy, precision, recall, F1 value, and AUC were 0.97±0.01/0.89±0.04, 0.92±0.12/0.77±0.15, 0.77±0.16/0.71 ±0.13, 0.82±0.11/0.72±0.09, and 0.92±0.08/0.85±0.07, respectively. The classification model based on a deep neural network was trained with a relatively small dataset; however, it showed good accuracy. In conclusion, we provided data collection and model training schemes for mTSS prediction and showed an important contribution to building an automated scoring system.
UR - http://www.scopus.com/inward/record.url?scp=85147965370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147965370&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0281088
DO - 10.1371/journal.pone.0281088
M3 - Article
C2 - 36780446
AN - SCOPUS:85147965370
SN - 1932-6203
VL - 18
JO - PLoS One
JF - PLoS One
IS - 2 February
M1 - e0281088
ER -