Detection of exotic order parameters of quantum antiferromagnets through reduced density matrices

Shunsuke Furukawa, Grégoire Misguich, Masaki Oshikawa

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a new method based on reduced density matrices for determining order parameters of quantum spin systems. Our method can extract the order parameter directly from ground-state wave functions without prior knowledge, and thus has a potential for detecting unknown exotic orders. We numerically apply our method to the multiple-spin exchange model on the ladder and detect the staggered dimer and the scalar chiral orders which have been found in previous studies. We also consider the resonating valence bond liquid in a solvable quantum dimer model and demonstrate through reduced density matrices that its ground states cannot be characterized by any local order parameter.

Original languageEnglish
Pages (from-to)143-147
Number of pages5
JournalProgress of Theoretical Physics Supplement
Volume159
DOIs
Publication statusPublished - 2005
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Detection of exotic order parameters of quantum antiferromagnets through reduced density matrices'. Together they form a unique fingerprint.

Cite this