Abstract
The transcription factor c-Myb was originally identified as a transforming oncoprotein encoded by two avian leukemia viruses. Subsequently, through the generation of mouse models that affect its expression, c-Myb has been shown to be a key regulator of hematopoiesis, including having critical roles in hematopoietic stem cells (HSCs). The precise function of c-Myb in HSCs although remains unclear. We have generated a novel c-myb allele in mice that allows direct observation of c-Myb protein levels in single cells. Using this reporter line we demonstrate that subtypes of HSCs can be isolated based upon their respective c-Myb protein expression levels. HSCs expressing low levels of c-Myb protein (c-MyblowHSC) appear to represent the most immature, dormant HSCs and they are a predominant component of HSCs that retain bromodeoxyuridine labeling. Hematopoietic stress, induced by 5-fluorouracil ablation, revealed that in this circumstance c-Myb-expressing cells become critical for multilineage repopulation. The discrimination of HSC subpopulations based on c-Myb protein levels is not reflected in the levels of c-myb mRNA, there being no more than a 1.3-fold difference comparing c-Myblow and c-MybhighHSCs. This illustrates how essential it is to include protein studies when aiming to understand the regulatory networks that control stem cell behavior.
Original language | English |
---|---|
Pages (from-to) | 479-490 |
Number of pages | 12 |
Journal | Stem Cells |
Volume | 33 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2015 Feb 1 |
Externally published | Yes |
Keywords
- Animals
- Cell proliferation
- Genetically modified
- Hematopoiesis
- Hematopoietic stem cell transplantation
- Hematopoietic stem cells
- Proto-oncogene proteins c-myb
ASJC Scopus subject areas
- Molecular Medicine
- Developmental Biology
- Cell Biology