Development of implantable hemodialysis system using PES membranes with high water-permeability

N. To, I. Sanada, H. Ito, S. Morita, Y. Kanno, N. Miki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents development of high water-permeable dialysis membranes. We proposed the system that does not use dialysis fluid for the implantable micro dialysis treatment and development of such membranes is crucial. We developed micro dialysis system composed by nanoporous membranes and microfluidic channels in our prior work. The membranes were made of nanoporous polyethersulfone (PES), which was not water-permeable. By not using dialysate, our device can be simplified because the pumps and storage tanks for the dialysis fluid are not necessary. This treatment is termed as hemofiltration. We measured the water permeability of PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. We could find the membranes with sufficiently high water permeability through in vitro experiments using a syringe pomp and whole cow blood, and the membrane had enough mechanical strength. We conducted experiments with multi-layered device in in vitro and in vivo using rats, where the system was connected to the vein and artery. We successfully collected the filtrate beyond target line, which was set by a medical doctor, without any leakage of blood from the device. The results verified that the filtration device can be scaled-up by increasing a number of the layer. We connected the device to a rat for 5h. It was verified the device maintained almost constant water permeability beyond our target line.

Original languageEnglish
Title of host publication2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1194-1197
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - 2015 Nov 4
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 2015 Aug 252015 Aug 29

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2015-November
ISSN (Print)1557-170X

Other

Other37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period15/8/2515/8/29

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Development of implantable hemodialysis system using PES membranes with high water-permeability'. Together they form a unique fingerprint.

Cite this