Diagnostics of low-frequency ch4 and h2 discharge by optical emission spectroscopy

T. Kokubo, F. Tochikubo, T. Makabe

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Low–frequency glow discharge for the deposition of hydrogenated amorphous carbon has been investigated by using time– and space–resolved emission spectroscopy as the parameters of pressure (0.3and<pand<3.0 Torr) and gas mixture ratio between CH4 and H2 at 100 kHz and 10 SCCM. The authors ascertain the temporal structure of the discharge. The CH(B2 Sigma ; v’=0 to X2 Pi; v”=0) band head in CH4/H2 is selected as a probe for monitoring the dynamics of the electron transport. The Ar I (3p55p:3p1 to 3p54s:1s2) line in pure Ar is also observed for comparison with the discharge structure in CH4/H2. The glow discharge property changes significantly with total gas pressure in the CH4/H2 mixture under investigation. Considerable variation is observed between the sustaining voltage and the emission profile of the discharge with the increase of mixture ratio of CH4 to H2 at constant power. Remarkable differences in the emission profile exist between CH4/H2 and Ar. The authors show that the drift velocity of the dominant ions plays an important role in deciding the structure of the discharge especially at low frequency, and that the plasma bulk potential in Ar is higher than that in H2 at the same applied voltage.

Original languageEnglish
Pages (from-to)1281-1287
Number of pages7
JournalJournal of Physics D: Applied Physics
Volume22
Issue number9
DOIs
Publication statusPublished - 1989 Sep 14

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Diagnostics of low-frequency ch<sub>4</sub> and h<sub>2</sub> discharge by optical emission spectroscopy'. Together they form a unique fingerprint.

Cite this