TY - JOUR
T1 - Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut
AU - Kitamoto, Sho
AU - Alteri, Christopher J.
AU - Rodrigues, Michael
AU - Nagao-Kitamoto, Hiroko
AU - Sugihara, Kohei
AU - Himpsl, Stephanie D.
AU - Bazzi, Malak
AU - Miyoshi, Mao
AU - Nishioka, Tatsuki
AU - Hayashi, Atsushi
AU - Morhardt, Tina L.
AU - Kuffa, Peter
AU - Grasberger, Helmut
AU - El-Zaatari, Mohamad
AU - Bishu, Shrinivas
AU - Ishii, Chiharu
AU - Hirayama, Akiyoshi
AU - Eaton, Kathryn A.
AU - Dogan, Belgin
AU - Simpson, Kenneth W.
AU - Inohara, Naohiro
AU - Mobley, Harry L.T.
AU - Kao, John Y.
AU - Fukuda, Shinji
AU - Barnich, Nicolas
AU - Kamada, Nobuhiko
N1 - Funding Information:
The authors thank the University of Michigan Center for Gastrointestinal Research (NIH 5P30DK034933), Host Microbiome Initiative, Germ-Free Animal Facility, DNA Sequencing Core, Bioinformatics Core for research support, and In Vivo Animal Core at the University of Michigan Unit for Laboratory Animal Medicine for performing the pathology assessment. We also thank S. Yamada, J. Imai, Y.-G. Kim and E. C. Martens for technical assistance, and M. Y. Zeng for critical reading of the manuscript. This work was supported by a Kenneth Rainin Foundation Innovator Award (to N.K.), National Institute of Health grants DK110146, DK108901 and DK119219 (to N.K.), T32 grant DK094775 (to T.L.M.), the Crohn’s and Colitis Foundation of America (to N.K. and H.N.-K.), a JSPS Postdoctoral Fellowship for Research Abroad (to S.K., H.N.-K. and K.S.), the Uehara Memorial Foundation Postdoctoral Fellowship Award (to S.K. and K.S.), the University of Michigan Clinical and Translational Science Awards Program (to S.K.), the Prevent Cancer Foundation (to S.K.), JSPS KAKENHI grants 16H04901, 17H05654 and 18H04805 (to S.F.), JST PRESTO award JPMJPR1537 (to S.F.), JST ERATO JPMJER1902 (to S.F.), AMED-CREST grant JP19gm1010009 (to S.F.), the Takeda Science Foundation (to S.F.), the Food Science Institute Foundation (to S.F.), Université Clermont Auvergne (to N.B.), Inserm U1071 (to N.B.) and INRA USC-2018 (to N.B.).
Funding Information:
Source data for all figures and extended data figures are provided in the online version of the paper. The E. coli LF82 RNA-Seq data used in this study have been deposited in the Gene Expression Omnibus database repository under the accession number GSE106412. The metabolome data obtained in this study are available from the website of the NIH Common Fund’s Data Repository and Coordinating Center (supported by NIH grant U01-DK097430)—the Metabolomics Workbench (http://www.metabolomicsworkbench.org), under project ID PR000837.
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Metabolic reprogramming is associated with the adaptation of host cells to the disease environment, such as inflammation and cancer. However, little is known about microbial metabolic reprogramming or the role it plays in regulating the fitness of commensal and pathogenic bacteria in the gut. Here, we report that intestinal inflammation reprograms the metabolic pathways of Enterobacteriaceae, such as Escherichia coli LF82, in the gut to adapt to the inflammatory environment. We found that E. coli LF82 shifts its metabolism to catabolize l-serine in the inflamed gut in order to maximize its growth potential. However, l-serine catabolism has a minimal effect on its fitness in the healthy gut. In fact, the absence of genes involved in l-serine utilization reduces the competitive fitness of E. coli LF82 and Citrobacter rodentium only during inflammation. The concentration of luminal l-serine is largely dependent on dietary intake. Accordingly, withholding amino acids from the diet markedly reduces their availability in the gut lumen. Hence, inflammation-induced blooms of E. coli LF82 are significantly blunted when amino acids—particularly l-serine—are removed from the diet. Thus, the ability to catabolize l-serine increases bacterial fitness and provides Enterobacteriaceae with a growth advantage against competitors in the inflamed gut.
AB - Metabolic reprogramming is associated with the adaptation of host cells to the disease environment, such as inflammation and cancer. However, little is known about microbial metabolic reprogramming or the role it plays in regulating the fitness of commensal and pathogenic bacteria in the gut. Here, we report that intestinal inflammation reprograms the metabolic pathways of Enterobacteriaceae, such as Escherichia coli LF82, in the gut to adapt to the inflammatory environment. We found that E. coli LF82 shifts its metabolism to catabolize l-serine in the inflamed gut in order to maximize its growth potential. However, l-serine catabolism has a minimal effect on its fitness in the healthy gut. In fact, the absence of genes involved in l-serine utilization reduces the competitive fitness of E. coli LF82 and Citrobacter rodentium only during inflammation. The concentration of luminal l-serine is largely dependent on dietary intake. Accordingly, withholding amino acids from the diet markedly reduces their availability in the gut lumen. Hence, inflammation-induced blooms of E. coli LF82 are significantly blunted when amino acids—particularly l-serine—are removed from the diet. Thus, the ability to catabolize l-serine increases bacterial fitness and provides Enterobacteriaceae with a growth advantage against competitors in the inflamed gut.
UR - http://www.scopus.com/inward/record.url?scp=85074782746&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074782746&partnerID=8YFLogxK
U2 - 10.1038/s41564-019-0591-6
DO - 10.1038/s41564-019-0591-6
M3 - Article
C2 - 31686025
AN - SCOPUS:85074782746
SN - 2058-5276
VL - 5
SP - 116
EP - 125
JO - Nature Microbiology
JF - Nature Microbiology
IS - 1
ER -