TY - JOUR
T1 - Different Activity Patterns in Retinal Ganglion Cells of TRPM1 and mGluR6 Knockout Mice
AU - Takeuchi, Haruki
AU - Horie, Sho
AU - Moritoh, Satoru
AU - Matsushima, Hiroki
AU - Hori, Tesshu
AU - Kimori, Yoshitaka
AU - Kitano, Katsunori
AU - Tsubo, Yasuhiro
AU - Tachibana, Masao
AU - Koike, Chieko
N1 - Funding Information:
The authors appreciate Drs. Takahisa Furukawa and Shi-gatada Nakanishi for TRPM1 and mGluR6 KO mice, respectively. They also acknowledge Mr. Shun Taga, Keisuke Yoshida, Ryo Kotoh, and Shingo Takizawa for their contribution to early work on this project and Dr. Hiroshi Ishikane for MEA analysis in the Laboratory for Systems Neuroscience and Developmental Biology. This work was supported by Precursory Research for Embryonic Science and Technology (PRESTO) from the Japan Science and Technology Agency, by grants from the Ministry of Education Program Grants-in-Aid for Scientific Research (B), by the industry to support private universities building up their foundations of strategic research from Ministry of Education, Culture, Sports, Science and Technology, and by the Takeda Science Foundation and R-GIRO (Ritsumeikan Global Innovation Research Organization).
Publisher Copyright:
© 2018 Haruki Takeuchi et al.
PY - 2018
Y1 - 2018
N2 - TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily, is the visual transduction channel downstream of metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells (BCs). Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB). In both TRPM1 and mGluR6 KO mouse retinas, OFF but not ON BCs respond to light stimulation. Here we report an unexpected difference between TRPM1 knockout (KO) and mGluR6 KO mouse retinas. We used a multielectrode array (MEA) to record spiking in retinal ganglion cells (RGCs). We found spontaneous oscillations in TRPM1 KO retinas, but not in mGluR6 KO retinas. We performed a structural analysis on the synaptic terminals of rod ON BCs. Intriguingly, rod ON BC terminals were significantly smaller in TRPM1 KO retinas than in mGluR6 KO retinas. These data suggest that a deficiency of TRPM1, but not of mGluR6, in rod ON bipolar cells may affect synaptic terminal maturation. We speculate that impaired signaling between rod BCs and AII amacrine cells (ACs) leads to spontaneous oscillations. TRPM1 and mGluR6 are both essential components in the signaling pathway from photoreceptors to ON BC dendrites, yet they differ in their effects on the BC terminal and postsynaptic circuitry.
AB - TRPM1, the first member of the melanoma-related transient receptor potential (TRPM) subfamily, is the visual transduction channel downstream of metabotropic glutamate receptor 6 (mGluR6) on retinal ON bipolar cells (BCs). Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB). In both TRPM1 and mGluR6 KO mouse retinas, OFF but not ON BCs respond to light stimulation. Here we report an unexpected difference between TRPM1 knockout (KO) and mGluR6 KO mouse retinas. We used a multielectrode array (MEA) to record spiking in retinal ganglion cells (RGCs). We found spontaneous oscillations in TRPM1 KO retinas, but not in mGluR6 KO retinas. We performed a structural analysis on the synaptic terminals of rod ON BCs. Intriguingly, rod ON BC terminals were significantly smaller in TRPM1 KO retinas than in mGluR6 KO retinas. These data suggest that a deficiency of TRPM1, but not of mGluR6, in rod ON bipolar cells may affect synaptic terminal maturation. We speculate that impaired signaling between rod BCs and AII amacrine cells (ACs) leads to spontaneous oscillations. TRPM1 and mGluR6 are both essential components in the signaling pathway from photoreceptors to ON BC dendrites, yet they differ in their effects on the BC terminal and postsynaptic circuitry.
UR - http://www.scopus.com/inward/record.url?scp=85048200787&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048200787&partnerID=8YFLogxK
U2 - 10.1155/2018/2963232
DO - 10.1155/2018/2963232
M3 - Article
C2 - 29854741
AN - SCOPUS:85048200787
SN - 2314-6133
VL - 2018
JO - BioMed Research International
JF - BioMed Research International
M1 - 2963232
ER -