Dilated cardiomyopathy-linked heat shock protein family D member 1 mutations cause up-regulation of reactive oxygen species and autophagy through mitochondrial dysfunction

Hirokazu Enomoto, Nishant Mittal, Takayuki Inomata, Takuro Arimura, Tohru Izumi, Akinori Kimura, Keiichi Fukuda, Shinji Makino

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Aims: During heart failure, the levels of circulatory heat shock protein family D member 1 (HSP60) increase. However, its underlying mechanism is still unknown. The apical domain of heat shock protein family D member 1 (HSPD1) is conserved throughout evolution. We found a point mutation in HSPD1 in a familial dilated cardiomyopathy (DCM) patient. A similar point mutation in HSPD1 in the zebrafish mutant, nbl, led to loss of its regenerative capacity and development of pericardial oedema under heat stress condition. In this study, we aimed to determine the direct involvement of HSPD1 in the development of DCM. Methods and results: By Sanger method, we found a point mutation (Thr320Ala) in the apical domain of HSPD1, in one familial DCM patient, which was four amino acids away from the point mutation (Val324Glu) in the nbl mutant zebrafish. The nbl mutants showed atrio-ventricular block and sudden death at 8-month post-fertilization. Histological and microscopic analysis of the nbl mutant hearts showed decreased ventricular wall thickness, elevated level of reactive oxygen species (ROS), increased fibrosis, mitochondrial damage, and increased autophagosomes. mRNA and protein expression of autophagy-related genes significantly increased in nbl mutants. We established HEK293 stable cell lines of wild-type, nbl-type, and DCM-type HSPD1, with tetracycline-dependent expression. Compared to wild-type, both nbl-and DCM-type cells showed decreased cell growth, increased expression of ROS and autophagy-related genes, inhibition of the activity of mitochondrial electron transport chain complexes III and IV, and decreased mitochondrial fission and fusion. Conclusion: Mutations in HSPD1 caused mitochondrial dysfunction and induced mitophagy. Mitochondrial dysfunction caused increased ROS and cardiac atrophy.

Original languageEnglish
Pages (from-to)1118-1131
Number of pages14
JournalCardiovascular Research
Volume117
Issue number4
DOIs
Publication statusPublished - 2021 Apr 1

Keywords

  • Dilated cardiomyopathy
  • HSPD1
  • Mitochondria
  • Mitophagy
  • Zebrafish

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Dilated cardiomyopathy-linked heat shock protein family D member 1 mutations cause up-regulation of reactive oxygen species and autophagy through mitochondrial dysfunction'. Together they form a unique fingerprint.

Cite this