DNA repair factor KAT5 prevents ischemic acute kidney injury through glomerular filtration regulation

Akihito Hishikawa, Kaori Hayashi, Akiko Kubo, Kazutoshi Miyashita, Akinori Hashiguchi, Kenichiro Kinouchi, Norifumi Yoshimoto, Ran Nakamichi, Riki Akashio, Erina Sugita, Tatsuhiko Azegami, Toshiaki Monkawa, Makoto Suematsu, Hiroshi Itoh

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The “preconditioning effect” in AKI is a phenomenon in which an episode of ischemia-reperfusion results in tolerance to subsequent ischemia-reperfusion injury. However, its relationship between DNA damage repair has not been elucidated. Here, we show the role of KAT5 in the preconditioning effect. Preconditioning attenuated DNA damage in proximal tubular cells with elevated KAT5 expression. Ischemia-reperfusion (IR) injuries were exacerbated, and preconditioning effect vanished in proximal tubular-cell-specific KAT5 knockout mice. Investigation of tubuloglomerular feedback (TGF) by MALDI-IMS and urinary adenosine revealed that preconditioning caused attenuated TGF at least in part via KAT5. In addition, K-Cl cotransporter 3 (KCC3) expression decreased in damaged proximal tubular cells, which may be involved in accelerated TGF following IR. Furthermore, KAT5 induced KCC3 expression by maintaining chromatin accessibility and binding to the KCC3 promoter. These results suggest a novel mechanism of the preconditioning effect mediated by the promotion of DNA repair and attenuation of TGF through KAT5.

Original languageEnglish
Article number103436
JournaliScience
Volume24
Issue number12
DOIs
Publication statusPublished - 2021 Dec 17

Keywords

  • Cell biology
  • Pathophysiology

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'DNA repair factor KAT5 prevents ischemic acute kidney injury through glomerular filtration regulation'. Together they form a unique fingerprint.

Cite this