TY - JOUR
T1 - Docetaxel enhances the cytotoxicity of cisplatin to gastric cancer cells by modification of intracellular platinum metabolism
AU - Maeda, Shingo
AU - Sugiura, Tsudoi
AU - Saikawa, Yoshiro
AU - Kubota, Tetsuro
AU - Otani, Yoshihide
AU - Kumai, Koichiro
AU - Kitajama, Masaki
PY - 2004/8
Y1 - 2004/8
N2 - We have examined the combined anticancer effects of docetaxel (DOC) and cisplatin (CDDP) in vitro using the gastric cancer cell lines MKN-45, MKN-74, and TMK-1. Treatment of the cell lines with 30 μg/ml of DOC for 24 h followed by incubation with 3 or 10 μg/ml of CDDP for 24 h showed a clear synergistic effect. Sequence dependency of the agents was observed in these cell lines: DOC followed by CDDP (DC) showed a stronger antitumor effect than CDDP followed by DOC (CD) in all cell lines. To clarify the mechanism of action of the DC combination, total intracellular platinum (Pt) levels were evaluated after treatment with CDDP alone or combined with DC. For the MKN-45 and -74 cell lines, cells treated with DOC (10 μg/ml for 12 h) and then CDDP showed significantly increased intracellular Pt accumulation compared to cells treated with CDDP alone. We also investigated alterations in intracellular glutathione (GSH) concentration in response to DOC and CDDP. MKN-45 and -74 cells pretreated with DOC (10 μg/ml for 12 h) showed significantly increased intracellular GSH levels compared to cells administered CDDP only. To explain these findings, messenger RNA (mRNA) levels for multidrug resistance-associated protein-1 (MRP-1), the ATP-dependent pump for Pt-GSH complexes, were quantified in CDDP-treated MKN-45 cells with and without DOC pretreatment. While CDDP administration increased MRP-1 mRNA expression in MKN-45 cells, MRP-1 was not up-regulated after CDDP administration in DOC pretreated MKN-45 cells. Our results suggested that the enhanced CDDP toxicity due to DOC pretreatment may be related to the accumulation of intracellular Pt-GSH complexes, because DOC appears to suppress the MRP-1 up-regulation induced by CDDP exposure in gastric cancer cells.
AB - We have examined the combined anticancer effects of docetaxel (DOC) and cisplatin (CDDP) in vitro using the gastric cancer cell lines MKN-45, MKN-74, and TMK-1. Treatment of the cell lines with 30 μg/ml of DOC for 24 h followed by incubation with 3 or 10 μg/ml of CDDP for 24 h showed a clear synergistic effect. Sequence dependency of the agents was observed in these cell lines: DOC followed by CDDP (DC) showed a stronger antitumor effect than CDDP followed by DOC (CD) in all cell lines. To clarify the mechanism of action of the DC combination, total intracellular platinum (Pt) levels were evaluated after treatment with CDDP alone or combined with DC. For the MKN-45 and -74 cell lines, cells treated with DOC (10 μg/ml for 12 h) and then CDDP showed significantly increased intracellular Pt accumulation compared to cells treated with CDDP alone. We also investigated alterations in intracellular glutathione (GSH) concentration in response to DOC and CDDP. MKN-45 and -74 cells pretreated with DOC (10 μg/ml for 12 h) showed significantly increased intracellular GSH levels compared to cells administered CDDP only. To explain these findings, messenger RNA (mRNA) levels for multidrug resistance-associated protein-1 (MRP-1), the ATP-dependent pump for Pt-GSH complexes, were quantified in CDDP-treated MKN-45 cells with and without DOC pretreatment. While CDDP administration increased MRP-1 mRNA expression in MKN-45 cells, MRP-1 was not up-regulated after CDDP administration in DOC pretreated MKN-45 cells. Our results suggested that the enhanced CDDP toxicity due to DOC pretreatment may be related to the accumulation of intracellular Pt-GSH complexes, because DOC appears to suppress the MRP-1 up-regulation induced by CDDP exposure in gastric cancer cells.
UR - http://www.scopus.com/inward/record.url?scp=4544270739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4544270739&partnerID=8YFLogxK
U2 - 10.1111/j.1349-7006.2004.tb03329.x
DO - 10.1111/j.1349-7006.2004.tb03329.x
M3 - Article
C2 - 15298732
AN - SCOPUS:4544270739
SN - 1347-9032
VL - 95
SP - 679
EP - 684
JO - Cancer Science
JF - Cancer Science
IS - 8
ER -