TY - JOUR

T1 - Domain walls with non-Abelian clouds

AU - Eto, Minoru

AU - Fujimori, Toshiaki

AU - Nitta, Muneto

AU - Ohashi, Keisuke

AU - Sakai, Norisuke

PY - 2008/6/5

Y1 - 2008/6/5

N2 - Domain walls in U(N) gauge theories, coupled to Higgs scalar fields with degenerate masses, are shown to possess normalizable non-Abelian Nambu-Goldstone (NG) modes, which we call non-Abelian clouds. We construct the moduli space metric and its Kähler potential of the effective field theory on the domain walls by focusing on two models: a U(1) gauge theory with several charged Higgs fields, and a U(N) gauge theory with 2N Higgs fields in the fundamental representation. We find that non-Abelian clouds spread between two domain walls and that their rotation induces a long-range repulsive force, in contrast to a U(1) mode in models with fully nondegenerate masses which gives a short-range force. We also construct a bound state of dyonic domain walls by introducing the imaginary part of the Higgs masses. In the latter model we find that when all walls coincide, SU(N)L×SU(N)R×U(1) symmetry is broken down to SU(N)V, and U(N)A NG modes and the same number of quasi-NG modes are localized on the wall. When n walls separate, off-diagonal elements of U(n) NG modes have wave functions spreading between two separated walls (non-Abelian clouds), whereas some quasi-NG modes turn to NG bosons as a result of further symmetry breaking U(n)V→U(1)Vn. In the case of 4+1-dimensional bulk, we can dualize the effective theory to the supersymmetric Freedman-Townsend model of non-Abelian 2-form fields.

AB - Domain walls in U(N) gauge theories, coupled to Higgs scalar fields with degenerate masses, are shown to possess normalizable non-Abelian Nambu-Goldstone (NG) modes, which we call non-Abelian clouds. We construct the moduli space metric and its Kähler potential of the effective field theory on the domain walls by focusing on two models: a U(1) gauge theory with several charged Higgs fields, and a U(N) gauge theory with 2N Higgs fields in the fundamental representation. We find that non-Abelian clouds spread between two domain walls and that their rotation induces a long-range repulsive force, in contrast to a U(1) mode in models with fully nondegenerate masses which gives a short-range force. We also construct a bound state of dyonic domain walls by introducing the imaginary part of the Higgs masses. In the latter model we find that when all walls coincide, SU(N)L×SU(N)R×U(1) symmetry is broken down to SU(N)V, and U(N)A NG modes and the same number of quasi-NG modes are localized on the wall. When n walls separate, off-diagonal elements of U(n) NG modes have wave functions spreading between two separated walls (non-Abelian clouds), whereas some quasi-NG modes turn to NG bosons as a result of further symmetry breaking U(n)V→U(1)Vn. In the case of 4+1-dimensional bulk, we can dualize the effective theory to the supersymmetric Freedman-Townsend model of non-Abelian 2-form fields.

UR - http://www.scopus.com/inward/record.url?scp=44949190257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=44949190257&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.77.125008

DO - 10.1103/PhysRevD.77.125008

M3 - Article

AN - SCOPUS:44949190257

SN - 1550-7998

VL - 77

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

IS - 12

M1 - 125008

ER -