Abstract
We study the Domany-Kinzel model, which is a class of discrete-time Markov processes in one-dimension with two parameters (P1, P2) ∈ [0, 1]2. When P1 = αβ and P2 = α(2β-β2) with (α, β) ∈ [0, 1] 2, the process can be identified with the mixed site-bond oriented percolation model on a square lattice with probabilities α of a site being open and β of a bond being open. This paper treats dualities for the Domany-Kinzel model ξtA and the DKdual ηtA starting from A. We prove that (i) E(x |ξtA ∩ B|) = E(x|ξtB ∩ A|) if x = 1-(2P 1-P2)/P12, (ii) E(x |ξtA ∩ B|) = E(x|ηtB ∩ A|) if x = 1-(2P1-P2)/P1, and (iii) E(x |ηtA ∩ B|) = E(x|ηtB ∩ A|) if x = 1-(2P1-P2), as long as one of A, B is finite and P 2 ≤ P1.
Original language | English |
---|---|
Pages (from-to) | 131-144 |
Number of pages | 14 |
Journal | Journal of Theoretical Probability |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2004 Jan 1 |
Externally published | Yes |
Keywords
- Duality
- The DK dual
- The Domany-Kinzel model
ASJC Scopus subject areas
- Statistics and Probability
- Mathematics(all)
- Statistics, Probability and Uncertainty