TY - JOUR
T1 - Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition
AU - Nakayama, Yoichi
AU - Kinoshita, Ayako
AU - Tomita, Masaru
PY - 2005/5/9
Y1 - 2005/5/9
N2 - Background: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. Results: Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. Conclusion: The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency.
AB - Background: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC. Results: Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system. Conclusion: The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency.
UR - http://www.scopus.com/inward/record.url?scp=21544479394&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=21544479394&partnerID=8YFLogxK
U2 - 10.1186/1742-4682-2-18
DO - 10.1186/1742-4682-2-18
M3 - Article
C2 - 15882454
AN - SCOPUS:21544479394
SN - 1742-4682
VL - 2
JO - Theoretical Biology and Medical Modelling
JF - Theoretical Biology and Medical Modelling
ER -