Abstract
A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichmüller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space-time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space-time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI0, VII0, and I universal covers.
Original language | English |
---|---|
Pages (from-to) | 350-368 |
Number of pages | 19 |
Journal | Journal of Mathematical Physics |
Volume | 38 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1997 Jan |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics