TY - JOUR
T1 - Effects of hyperoxia on the refraction in murine neonatal and adult models
AU - Mori, Kiwako
AU - Kurihara, Toshihide
AU - Jiang, Xiaoyan
AU - Ikeda, Shin Ichi
AU - Ishida, Ayako
AU - Torii, Hidemasa
AU - Tsubota, Kazuo
N1 - Funding Information:
Funding: This work is supported by Grants-in-Aid for Scientific Research (KAKENHI, numbers 15K10881 and 18K09424) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and specified contribution from Keio University to T.K.
Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Whether hyperoxia affects the refraction in neonatal and adult mice is unknown. The mice exposed to 85% oxygen at postnatal 8 days (P8d) for 3 days and the mice exposed to normal air were assigned to the neonatal hyperoxia and normoxia groups, respectively. The refraction, the corneal curvature radius (CR) and the axial length (AL) were measured at P30d and P47d. Postnatal 6 weeks (P6w) adult mice were divided into the adult hyperoxia and normoxia groups. These parameters were measured before oxygen exposure, after 1 and 6 weeks, and every 7 weeks. The lens elasticity was measured at P7w and P26w by enucleation. The neonatal hyperoxia group showed a significantly larger myopic change than the neonatal normoxia group (P47d −6.56 ± 5.89 D, +4.11 ± 2.02 D, p < 0.001), whereas the changes in AL were not significantly different (P47d, 3.31 ± 0.04 mm, 3.31 ± 0.05 mm, p = 0.852). The adult hyperoxia group also showed a significantly larger myopic change (P12w, −7.20 ± 4.09 D, +7.52 ± 2.54 D, p < 0.001). The AL did not show significant difference (P12w, 3.44 ± 0.03 mm, 3.43 ± 0.01 mm, p = 0.545); however, the CR in the adult hyperoxia group was significantly smaller than the adult normoxia group (P12w, 1.44 ± 0.03 mm, 1.50 ± 0.03 mm, p = 0.003). In conclusion, hyperoxia was demonstrated to induce myopic shift both in neonatal and adult mice, which was attributed to the change in the CR rather than the AL. Elucidation of the mechanisms of hyperoxia and the application of this result to humans should be carried out in future studies.
AB - Whether hyperoxia affects the refraction in neonatal and adult mice is unknown. The mice exposed to 85% oxygen at postnatal 8 days (P8d) for 3 days and the mice exposed to normal air were assigned to the neonatal hyperoxia and normoxia groups, respectively. The refraction, the corneal curvature radius (CR) and the axial length (AL) were measured at P30d and P47d. Postnatal 6 weeks (P6w) adult mice were divided into the adult hyperoxia and normoxia groups. These parameters were measured before oxygen exposure, after 1 and 6 weeks, and every 7 weeks. The lens elasticity was measured at P7w and P26w by enucleation. The neonatal hyperoxia group showed a significantly larger myopic change than the neonatal normoxia group (P47d −6.56 ± 5.89 D, +4.11 ± 2.02 D, p < 0.001), whereas the changes in AL were not significantly different (P47d, 3.31 ± 0.04 mm, 3.31 ± 0.05 mm, p = 0.852). The adult hyperoxia group also showed a significantly larger myopic change (P12w, −7.20 ± 4.09 D, +7.52 ± 2.54 D, p < 0.001). The AL did not show significant difference (P12w, 3.44 ± 0.03 mm, 3.43 ± 0.01 mm, p = 0.545); however, the CR in the adult hyperoxia group was significantly smaller than the adult normoxia group (P12w, 1.44 ± 0.03 mm, 1.50 ± 0.03 mm, p = 0.003). In conclusion, hyperoxia was demonstrated to induce myopic shift both in neonatal and adult mice, which was attributed to the change in the CR rather than the AL. Elucidation of the mechanisms of hyperoxia and the application of this result to humans should be carried out in future studies.
KW - High concentrated oxygen
KW - Hyperoxia
KW - Myopia
KW - Oxygen-induced retinopathy
KW - Retinopathy of prematurity
UR - http://www.scopus.com/inward/record.url?scp=85076119227&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076119227&partnerID=8YFLogxK
U2 - 10.3390/ijms20236014
DO - 10.3390/ijms20236014
M3 - Article
C2 - 31795325
AN - SCOPUS:85076119227
SN - 1661-6596
VL - 20
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 23
M1 - 6014
ER -