TY - GEN
T1 - Effects of post calcination treatment on photoluminescence and structural properties of scheelite-type LiEuW2O8 nanocrystals synthesized by glycothermal reaction
AU - Kasuya, Ryo
AU - Isobe, Tetsuhiko
AU - Yamao, Shinobu
AU - Sfihi, Hocine
PY - 2006/1/1
Y1 - 2006/1/1
N2 - The scheelite-type LiEuW2O8 (LEW) nanoparticles of ∼50 nm in diameter were synthesized from lithium acetate, europium (III) acetate and phosphotungstic acid in 1,4-butylene glycol at 300°C for 2h by autoclave treatment. Post calcination treatment at 600°C for 2 h enhanced the photoluminescence at 465 nm due to the 4f - 4f transition excitation of Eu3+ by a factor of 24.4, and due to charge transfer (CT) excitation from either O2- or WO42- to Eu3+ by a factor of 5.8. Convergent beam electron diffractmetry and the compositional analysis revealed the non-stoichiometric structure of the scheelite-type LEW nanocrystals. Raman spectroscopy also detected the WO4 vibrational modes due to the tetragonal scheelite-type LEW. Solid-state 7Li single pulse excitation MAS NMR indicated the existence of at least three Li sites in the samples. We conclude that the following three factors are improved by calcination to increase the f-f transition probability of Eu3+: (i) a distribution of the Eu3+ - Eu3+ distance, (ii) the symmetry of Eu3+ polyhedra, (iii) the symmetry of tetrahedral WO 4 units in the vicinity of Eu3+ polyhedra. Furthermore, oxygen is provided for non-stoichiometric LEW during calcination to enhance the CT probability.
AB - The scheelite-type LiEuW2O8 (LEW) nanoparticles of ∼50 nm in diameter were synthesized from lithium acetate, europium (III) acetate and phosphotungstic acid in 1,4-butylene glycol at 300°C for 2h by autoclave treatment. Post calcination treatment at 600°C for 2 h enhanced the photoluminescence at 465 nm due to the 4f - 4f transition excitation of Eu3+ by a factor of 24.4, and due to charge transfer (CT) excitation from either O2- or WO42- to Eu3+ by a factor of 5.8. Convergent beam electron diffractmetry and the compositional analysis revealed the non-stoichiometric structure of the scheelite-type LEW nanocrystals. Raman spectroscopy also detected the WO4 vibrational modes due to the tetragonal scheelite-type LEW. Solid-state 7Li single pulse excitation MAS NMR indicated the existence of at least three Li sites in the samples. We conclude that the following three factors are improved by calcination to increase the f-f transition probability of Eu3+: (i) a distribution of the Eu3+ - Eu3+ distance, (ii) the symmetry of Eu3+ polyhedra, (iii) the symmetry of tetrahedral WO 4 units in the vicinity of Eu3+ polyhedra. Furthermore, oxygen is provided for non-stoichiometric LEW during calcination to enhance the CT probability.
UR - http://www.scopus.com/inward/record.url?scp=40949084832&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40949084832&partnerID=8YFLogxK
U2 - 10.1557/proc-0951-e03-29
DO - 10.1557/proc-0951-e03-29
M3 - Conference contribution
AN - SCOPUS:40949084832
SN - 9781604234077
T3 - Materials Research Society Symposium Proceedings
SP - 155
EP - 160
BT - Nanofunctional Materials, Nanostructures and Novel Devices for Biological and Chemical Detection
PB - Materials Research Society
T2 - 2006 MRS Fall Meeting
Y2 - 27 November 2006 through 1 December 2006
ER -