Abstract
Photocatalytic O2 reduction reactions proceeded to produce H2O2 using a diprotonated saddle-distorted dodecaphenylporphyrin as a photocatalyst. The quantum yield (12%), the turnover number (3000 for 6 h), and the turnover frequency (500 h-1) are achieved in photocatalytic systems based on free-base porphyrins for the first time. The photocatalytic reaction mechanism has been revealed by ns-laser flash photolysis and kinetic analysis.
Original language | English |
---|---|
Pages (from-to) | 4925-4928 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 55 |
Issue number | 34 |
DOIs | |
Publication status | Published - 2019 |
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Chemistry(all)
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry