Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds

Yusuke Katsuki, Hiroshi Yagi, Teru Okitsu, Minoru Kitago, Kazuki Tajima, Yoshie Kadota, Taizo Hibi, Yuta Abe, Masahiro Shinoda, Osamu Itano, Shoji Takeuchi, Yuko Kitagawa

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Objectives Because therapeutic options for severe diabetes are currently limited, there is a continuing need for new therapeutic strategies, especially in the field of regenerative medicine. Collaborative efforts across the fields of tissue engineering technology and islet biology may be able to create functionally engineered islets capable of restoring endocrine function in patients with insulin-dependent diabetes. Methods This engineered scaffold was seeded with isolated primary porcine islets via the pancreatic duct using a multi-step infusion technique. Endocrine function of perfusion-cultured islets in the native scaffold was analyzed by immunohistochemical staining of insulin and glucagon as well as by the insulin stimulation test. Results The pancreas in this large animal could be uniformly decellularized by perfusion with trypsin and TritonX-100 via the pancreatic duct, as shown by positive staining of extracellular matrix (ECM) components. These scaffolds derived from porcine pancreas were able to maintain the cellular integrity of islets that had repopulated the parenchymal space, which is fundamental for the restoration of endocrine function. Insulin release up to four days after islet infusion was maintained. Conclusions This scaffold from a large animal maintained islet survival and function in the short-term, retaining the cells as a solid organ in the parenchymal space after infusion through the pancreatic duct. These results suggest that this scaffold is suitable for further fabrication of fully functional bioengineered endocrine pancreases when implanted in vivo. Therefore, it may represent a key improvement in the field of beta-cell replacement therapy. Nonetheless, the facilitation of longer-term islet survival and studies of implantation in vivo is required for successful clinical translation.

Original languageEnglish
Pages (from-to)922-930
Number of pages9
JournalPancreatology
Volume16
Issue number5
DOIs
Publication statusPublished - 2016 Sep 1

Keywords

  • Cell transplantation
  • Extracellular matrix
  • Large animal
  • Recellularization
  • Tissue engineering

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Hepatology
  • Gastroenterology

Fingerprint Dive into the research topics of 'Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds'. Together they form a unique fingerprint.

  • Cite this

    Katsuki, Y., Yagi, H., Okitsu, T., Kitago, M., Tajima, K., Kadota, Y., Hibi, T., Abe, Y., Shinoda, M., Itano, O., Takeuchi, S., & Kitagawa, Y. (2016). Endocrine pancreas engineered using porcine islets and partial pancreatic scaffolds. Pancreatology, 16(5), 922-930. https://doi.org/10.1016/j.pan.2016.06.007