TY - JOUR
T1 - Energy-dependent endocytosis is responsible for drug transcorneal penetration following the instillation of ophthalmic formulations containing indomethacin nanoparticles
AU - Nagai, Noriaki
AU - Ogata, Fumihiko
AU - Otake, Hiroko
AU - Nakazawa, Yosuke
AU - Kawasaki, Naohito
N1 - Publisher Copyright:
© 2019 Nagai et al.
PY - 2019
Y1 - 2019
N2 - Purpose: We previously found that ophthalmic formulations containing nanoparticles prepared by a bead mill method lead to an increase in bioavailability in comparison with traditional formulations (solution type). However, the transcorneal penetration pathway for ophthalmic formulations has not been explained yet. In this study, we investigated the mechanism of transcorneal penetration in the application of ophthalmic formulations containing indomethacin nanoparticles (IMC-NPs). Materials and methods: IMC-NPs was prepared by the bead mill method. For the analysis of energy-dependent endocytosis, corneal epithelial (HCE-T) cell monolayers and removed rabbit cornea were thermoregulated at 4°C, where energy-dependent endocytosis is inhibited. In addition, for the analysis of different endocytosis pathways using pharmacological inhibitors, inhibitors of caveolae-mediated endocytosis (54 µM nystatin), clathrin-mediated endocytosis (40 µM dynasore), macropinocytosis (2 µM rottlerin) or phagocytosis (10 µM cytochalasin D) were used. Results: The ophthalmic formulations containing 35–200 nm sized indomethacin nanoparticles were prepared by treatment with a bead mill, and no aggregation or degradation of indomethacin was observed in IMC-NPs. The transcorneal penetration of indomethacin was significantly decreased by the combination of nystatin, dynasore and rottlerin, and the decreased penetration levels were similar to those at 4°C in HCE-T cell monolayers and rabbit cornea. In the in vivo experiments using rabbits, dynasore and rottlerin tended to decrease the transcorneal penetration of indomethacin (area under the drug concentration – time curve in the aqueous humor [AUC AH ]), and the AUC AH in the nystatin-treated rabbit was significantly lower than that in non-treatment group. In addition, the AUC AH in rabbit corneas undergoing multi-treatment was obviously lower than that in rabbit corneas treated with each individual endocytosis inhibitor. Conclusion: We found that three energy-dependent endocytosis pathways (clathrin-dependent endocytosis, caveolae-dependent endocytosis and macropinocytosis) are related to the transcorneal penetration of indomethacin nanoparticles. In particular, the caveolae-dependent endocytosis is strongly involved.
AB - Purpose: We previously found that ophthalmic formulations containing nanoparticles prepared by a bead mill method lead to an increase in bioavailability in comparison with traditional formulations (solution type). However, the transcorneal penetration pathway for ophthalmic formulations has not been explained yet. In this study, we investigated the mechanism of transcorneal penetration in the application of ophthalmic formulations containing indomethacin nanoparticles (IMC-NPs). Materials and methods: IMC-NPs was prepared by the bead mill method. For the analysis of energy-dependent endocytosis, corneal epithelial (HCE-T) cell monolayers and removed rabbit cornea were thermoregulated at 4°C, where energy-dependent endocytosis is inhibited. In addition, for the analysis of different endocytosis pathways using pharmacological inhibitors, inhibitors of caveolae-mediated endocytosis (54 µM nystatin), clathrin-mediated endocytosis (40 µM dynasore), macropinocytosis (2 µM rottlerin) or phagocytosis (10 µM cytochalasin D) were used. Results: The ophthalmic formulations containing 35–200 nm sized indomethacin nanoparticles were prepared by treatment with a bead mill, and no aggregation or degradation of indomethacin was observed in IMC-NPs. The transcorneal penetration of indomethacin was significantly decreased by the combination of nystatin, dynasore and rottlerin, and the decreased penetration levels were similar to those at 4°C in HCE-T cell monolayers and rabbit cornea. In the in vivo experiments using rabbits, dynasore and rottlerin tended to decrease the transcorneal penetration of indomethacin (area under the drug concentration – time curve in the aqueous humor [AUC AH ]), and the AUC AH in the nystatin-treated rabbit was significantly lower than that in non-treatment group. In addition, the AUC AH in rabbit corneas undergoing multi-treatment was obviously lower than that in rabbit corneas treated with each individual endocytosis inhibitor. Conclusion: We found that three energy-dependent endocytosis pathways (clathrin-dependent endocytosis, caveolae-dependent endocytosis and macropinocytosis) are related to the transcorneal penetration of indomethacin nanoparticles. In particular, the caveolae-dependent endocytosis is strongly involved.
KW - Bead mill
KW - Caveolae-dependent endocytosis
KW - Clathrin-dependent endocytosis
KW - Drug delivery system
KW - Macropinocytosis
UR - http://www.scopus.com/inward/record.url?scp=85062881467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062881467&partnerID=8YFLogxK
U2 - 10.2147/IJN.S196681
DO - 10.2147/IJN.S196681
M3 - Article
C2 - 30863055
AN - SCOPUS:85062881467
SN - 1176-9114
VL - 14
SP - 1213
EP - 1227
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -