TY - GEN
T1 - Energy storage of PV using batteries of battery-switch stations
AU - Takagi, Masaaki
AU - Iwafune, Yumiko
AU - Yamamoto, Hiromi
AU - Yamaji, Kenji
AU - Okano, Kunihiko
AU - Hiwatari, Ryoji
AU - Ikeya, Tomohiko
PY - 2010/12/27
Y1 - 2010/12/27
N2 - In the power sector, the Japanese government has set the goal of that the introduction of PV will reach 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. This means switch stations always have the constant capacity of battery. We propose the use of station's batteries as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 695.7 billion yen. Hence, if a utility leases batteries from stations fewer than 695.7 billion yen, the utility will get a cost advantage in Battery case.
AB - In the power sector, the Japanese government has set the goal of that the introduction of PV will reach 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. This means switch stations always have the constant capacity of battery. We propose the use of station's batteries as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 695.7 billion yen. Hence, if a utility leases batteries from stations fewer than 695.7 billion yen, the utility will get a cost advantage in Battery case.
UR - http://www.scopus.com/inward/record.url?scp=78650326739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78650326739&partnerID=8YFLogxK
U2 - 10.1109/ISIE.2010.5637722
DO - 10.1109/ISIE.2010.5637722
M3 - Conference contribution
AN - SCOPUS:78650326739
SN - 9781424463916
T3 - IEEE International Symposium on Industrial Electronics
SP - 3413
EP - 3419
BT - ISIE 2010 - 2010 IEEE International Symposium on Industrial Electronics
T2 - 2010 IEEE International Symposium on Industrial Electronics, ISIE 2010
Y2 - 4 July 2010 through 7 July 2010
ER -