Abstract
This study was performed to determine if a combination of previously undifferentiated bone marrow-derived mesenchymal stem cells (BMMSCs) and exogenous bone morphogenetic protein-2 (BMP-2) delivered via heparin-conjugated PLGA nanoparticles (HCPNs) would extensively regenerate bone in vivo. In vitro testing found that the HCPNs were able to release BMP-2 over a 2-week period. Human BMMSCs cultured in medium containing BMP-2-loaded HCPNs for 2 weeks differentiated toward osteogenic cells expressing alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OCN) mRNA, while cells without BMP-2 expressed only ALP. In vivo testing found that undifferentiated BMMSCs with BMP-2-loaded HCPNs induce far more extensive bone formation than either implantation of BMP-2-loaded HCPNs or osteogenically differentiated BMMSCs. This study demonstrates the feasibility of extensive in vivo bone regeneration by transplantation of undifferentiated BMMSCs and BMP-2 delivery via HCPNs.
Original language | English |
---|---|
Pages (from-to) | 771-777 |
Number of pages | 7 |
Journal | Journal of Biomedical Science |
Volume | 15 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2008 Nov |
Keywords
- Bone marrow-derived mesenchymal stem cell
- Bone morphogenetic protein-2
- Bone regeneration
- Heparin-conjugated PLGA nanoparticles
ASJC Scopus subject areas
- Endocrinology, Diabetes and Metabolism
- Molecular Biology
- Clinical Biochemistry
- Cell Biology
- Biochemistry, medical
- Pharmacology (medical)