## Abstract

We study the entanglement properties of a quantum lattice-gas model for which we can find the exact ground state (of the Rokhsar-Kivelson type). The ground state can be expressed as a superposition of states, each of which is characterized by a particle configuration with nearest-neighbor exclusion. We show that the reduced density matrix of the model on a ladder is intimately related to the transfer matrix of the classical hard-square model. The entanglement spectra of the model on square and triangular ladders are critical when parameters are chosen so that the corresponding classical hard-square models are critical. A detailed analysis reveals that the critical theories for the entanglement Hamiltonians are c<1 minimal conformal field theories. We further show that the entanglement Hamiltonian for the triangular ladder is integrable despite the fact that the original quantum lattice-gas model is nonintegrable.

Original language | English |
---|---|

Article number | 032326 |

Journal | Physical Review A - Atomic, Molecular, and Optical Physics |

Volume | 86 |

Issue number | 3 |

DOIs | |

Publication status | Published - 2012 Sep 19 |

## ASJC Scopus subject areas

- Atomic and Molecular Physics, and Optics