TY - JOUR
T1 - EphB4 enhances the process of endochondral ossification and inhibits remodeling during bone fracture repair
AU - Arthur, Agnieszka
AU - Panagopoulos, Romana A.
AU - Cooper, Lachlan
AU - Menicanin, Danijela
AU - Parkinson, Ian H.
AU - Codrington, John D.
AU - Vandyke, Kate
AU - Zannettino, Andrew C.W.
AU - Koblar, Simon A.
AU - Sims, Natalie A.
AU - Matsuo, Koichi
AU - Gronthos, Stan
PY - 2013/4
Y1 - 2013/4
N2 - Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1-EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1-EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild-type mice. The fractured bones of Col1-EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild-type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1-EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU-F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild-type control mice. Furthermore, Col1-EphB4 mice had significantly lower numbers of TRAP-positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones.
AB - Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1-EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1-EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild-type mice. The fractured bones of Col1-EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild-type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1-EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU-F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild-type control mice. Furthermore, Col1-EphB4 mice had significantly lower numbers of TRAP-positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones.
KW - EPHB4
KW - bone repair
KW - endochondral ossification
KW - mesenchymal stem cells
KW - osteoblasts
UR - http://www.scopus.com/inward/record.url?scp=84875324671&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875324671&partnerID=8YFLogxK
U2 - 10.1002/jbmr.1821
DO - 10.1002/jbmr.1821
M3 - Article
C2 - 23165754
AN - SCOPUS:84875324671
VL - 28
SP - 926
EP - 935
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
SN - 0884-0431
IS - 4
ER -