Abstract
Epstein-Barr virus (EBV), a human oncogenic virus, is a B cell-tropic herpesvirus and has the ability to immortalize normal B cells during latent infection. The Epstein-Barr nuclear antigen 1 (EBNA1) protein of EBV is expressed in the most EBV latently infected cells and binds to a specific viral genome region termed “oriP” (origin of plasmid replication) to maintain the stability of the approximately 170 kb double-stranded circular virus genomic DNA (episome) in cells. EBV elimination is thought to inhibit progression of EBV-associated malignancies, and the EBNA1-dependent mechanisms for EBV episome replication and maintenance are considered to be novel molecular targets for anti-EBV therapy. We have explored small-molecule compounds that can inhibit the binding between EBNA1 protein and oriP and found one pyrrole imidazole polyamide named DSE3 which can also inhibit EBV-mediated immortalization of normal B cells. These data suggested that an EBNA1-targeting strategy could be useful to combat EBV-associated malignancies.
Original language | English |
---|---|
Pages (from-to) | 63-67 |
Number of pages | 5 |
Journal | Yakugaku Zasshi |
Volume | 139 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- DNA replication
- Epstein-barr virus
- Molecular target
ASJC Scopus subject areas
- Pharmacology
- Pharmaceutical Science