Establishment of HRASG12V Transgenic Medaka as a Stable Tumor Model for In Vivo Screening of Anticancer Drugs

Yuriko Matsuzaki, Haru Hosokai, Yukiyo Mizuguchi, Shoji Fukamachi, Atsushi Shimizu, Hideyuki Saya

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Most targeted anticancer drugs have been identified by screening at the molecular or cellular level in vitro. However, many compounds selected by such costly and time-consuming screening do not prove effective against tumors in vivo. The development of anticancer drugs would thus be facilitated by the availability of an in vivo screening system based on a multicellular organism. We have now established a transgenic line of the freshwater fish medaka in which melanophores (melanocytes) proliferate in a manner dependent on heat shock-induced signaling by a human RAS oncoprotein. The human HRASG12V oncogene was expressed under the control of a melanophore-specific gene promoter in order to allow visualization of tumor growth in live fish maintained in a water tank. The expression of HRASG12V was induced as a result of Cre-mediated recombination by exposure of the fish to a temperature of 37°C for 30 min, given that the Cre gene was placed under the control of a medaka heat shock promoter. One of the stable transgenic lines developed abnormal pigment cell proliferation in the eyes and epidermis with 100% penetrance by 6 months postfertilization. Sorafenib, an inhibitor of RAS signaling, was administered to the transgenic fish and was found both to reduce the extent of melanophore proliferation and to improve survival. The transgenic medaka established here thus represents a promising in vivo system with which to screen potential anticancer drugs that target RAS signaling, and this system can readily be adapted for the screening of agents that target other oncogenes.

Original languageEnglish
Article numbere54424
JournalPloS one
Volume8
Issue number1
DOIs
Publication statusPublished - 2013 Jan 14

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this