Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors

Ken Uchida, Junji Koga, Shin Ichi Takagi

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

The electron mobility in ultrathin-body (UTB) silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with SOI thicknesses from 2.3 to 60 nm is measured in a wide temperature range from 25 to 300 K. In UTB SOI MOSFETs with SOI thickness ranging from 5 to 20 nm, a monotonic decrease of electron mobility with a decrease in SOI thickness is observed at room temperature. At extremely low temperature (25 K), however, the electron mobility of UTB SOI MOSFETs with SOI thickness of 5.7 nm is not degraded but is almost the same as that of thick-body SOI MOSFETs. On the other hand, in UTB SOI MOSFETs with SOI thickness ranging from 3.5 to 4.5 nm, an increase of electron mobility with a decrease in SOI thickness is clearly demonstrated at the effective normal field of around 0.3 MVcm at 300 K. It is concluded that the decrease of electron mobility in SOI thickness ranging from 5 to 20 nm is due to the increased phonon scattering in thinner SOI films. The observed enhancement of electron mobility with decreasing SOI thickness from 4.5 to 3.5 nm is ascribed to the subband structure modulation induced by quantum confinement effects in nanoscale SOI films. The impact of SOI thickness fluctuations on electron mobility and the methods to evaluate the thickness of ultrathin SOI films are also discussed.

Original languageEnglish
Article number074510
JournalJournal of Applied Physics
Volume102
Issue number7
DOIs
Publication statusPublished - 2007
Externally publishedYes

Fingerprint

electron mobility
metal oxide semiconductors
field effect transistors
insulators
silicon

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)

Cite this

Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors. / Uchida, Ken; Koga, Junji; Takagi, Shin Ichi.

In: Journal of Applied Physics, Vol. 102, No. 7, 074510, 2007.

Research output: Contribution to journalArticle

@article{39ca117e7b1f490bade454961ae89b4e,
title = "Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors",
abstract = "The electron mobility in ultrathin-body (UTB) silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with SOI thicknesses from 2.3 to 60 nm is measured in a wide temperature range from 25 to 300 K. In UTB SOI MOSFETs with SOI thickness ranging from 5 to 20 nm, a monotonic decrease of electron mobility with a decrease in SOI thickness is observed at room temperature. At extremely low temperature (25 K), however, the electron mobility of UTB SOI MOSFETs with SOI thickness of 5.7 nm is not degraded but is almost the same as that of thick-body SOI MOSFETs. On the other hand, in UTB SOI MOSFETs with SOI thickness ranging from 3.5 to 4.5 nm, an increase of electron mobility with a decrease in SOI thickness is clearly demonstrated at the effective normal field of around 0.3 MVcm at 300 K. It is concluded that the decrease of electron mobility in SOI thickness ranging from 5 to 20 nm is due to the increased phonon scattering in thinner SOI films. The observed enhancement of electron mobility with decreasing SOI thickness from 4.5 to 3.5 nm is ascribed to the subband structure modulation induced by quantum confinement effects in nanoscale SOI films. The impact of SOI thickness fluctuations on electron mobility and the methods to evaluate the thickness of ultrathin SOI films are also discussed.",
author = "Ken Uchida and Junji Koga and Takagi, {Shin Ichi}",
year = "2007",
doi = "10.1063/1.2785957",
language = "English",
volume = "102",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors

AU - Uchida, Ken

AU - Koga, Junji

AU - Takagi, Shin Ichi

PY - 2007

Y1 - 2007

N2 - The electron mobility in ultrathin-body (UTB) silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with SOI thicknesses from 2.3 to 60 nm is measured in a wide temperature range from 25 to 300 K. In UTB SOI MOSFETs with SOI thickness ranging from 5 to 20 nm, a monotonic decrease of electron mobility with a decrease in SOI thickness is observed at room temperature. At extremely low temperature (25 K), however, the electron mobility of UTB SOI MOSFETs with SOI thickness of 5.7 nm is not degraded but is almost the same as that of thick-body SOI MOSFETs. On the other hand, in UTB SOI MOSFETs with SOI thickness ranging from 3.5 to 4.5 nm, an increase of electron mobility with a decrease in SOI thickness is clearly demonstrated at the effective normal field of around 0.3 MVcm at 300 K. It is concluded that the decrease of electron mobility in SOI thickness ranging from 5 to 20 nm is due to the increased phonon scattering in thinner SOI films. The observed enhancement of electron mobility with decreasing SOI thickness from 4.5 to 3.5 nm is ascribed to the subband structure modulation induced by quantum confinement effects in nanoscale SOI films. The impact of SOI thickness fluctuations on electron mobility and the methods to evaluate the thickness of ultrathin SOI films are also discussed.

AB - The electron mobility in ultrathin-body (UTB) silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFETs) with SOI thicknesses from 2.3 to 60 nm is measured in a wide temperature range from 25 to 300 K. In UTB SOI MOSFETs with SOI thickness ranging from 5 to 20 nm, a monotonic decrease of electron mobility with a decrease in SOI thickness is observed at room temperature. At extremely low temperature (25 K), however, the electron mobility of UTB SOI MOSFETs with SOI thickness of 5.7 nm is not degraded but is almost the same as that of thick-body SOI MOSFETs. On the other hand, in UTB SOI MOSFETs with SOI thickness ranging from 3.5 to 4.5 nm, an increase of electron mobility with a decrease in SOI thickness is clearly demonstrated at the effective normal field of around 0.3 MVcm at 300 K. It is concluded that the decrease of electron mobility in SOI thickness ranging from 5 to 20 nm is due to the increased phonon scattering in thinner SOI films. The observed enhancement of electron mobility with decreasing SOI thickness from 4.5 to 3.5 nm is ascribed to the subband structure modulation induced by quantum confinement effects in nanoscale SOI films. The impact of SOI thickness fluctuations on electron mobility and the methods to evaluate the thickness of ultrathin SOI films are also discussed.

UR - http://www.scopus.com/inward/record.url?scp=35348858675&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=35348858675&partnerID=8YFLogxK

U2 - 10.1063/1.2785957

DO - 10.1063/1.2785957

M3 - Article

AN - SCOPUS:35348858675

VL - 102

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 7

M1 - 074510

ER -