Feasibility of a Fulde-Ferrell-Larkin-Ovchinnikov superfluid Fermi atomic gas

Taira Kawamura, Yoji Ohashi

Research output: Contribution to journalArticlepeer-review

Abstract

We theoretically explore a promising route to achieve the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in a spin-imbalanced ultracold Fermi gas. In the current stage of cold atom physics, search for this exotic Fermi superfluid is facing two serious difficulties: One is the desperate destruction of the FFLO long-range order by FFLO pairing fluctuations, which precludes entering the phase through a second-order transition, even in three dimension. The other is the fierce competition with the phase separation into the BCS (Bardeen-Cooper-Schrieffer) state and the spin-polarized normal state. By including strong FFLO pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that the anisotropy of Fermi surface introduced by an optical lattice makes the FFLO state stable against the paring fluctuations. This stabilized FFLO state is also found to be able to overcome the competition with the phase separation under a certain condition. Since the realization of unconventional Fermi superfluids is one of the most exciting challenges in cold atom physics, our results would contribute to the further development of this field.

Original languageEnglish
Article number033320
JournalPhysical Review A
Volume106
Issue number3
DOIs
Publication statusPublished - 2022 Sep

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Feasibility of a Fulde-Ferrell-Larkin-Ovchinnikov superfluid Fermi atomic gas'. Together they form a unique fingerprint.

Cite this