Feasibility of Emission-Enhanced CsPbCl3Quantum Dots Co-Doped with Mn2+and Er3+as Luminescent Downshifting Layers in Crystalline Silicon Solar Modules

Pengjie Song, Shunnosuke Hase, Suling Zhao, Zheng Xu, Yoshiki Iso, Tetsuhiko Isobe

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

In order to enhance the photoelectric conversion efficiencies of crystalline silicon (c-Si) solar cells, CsPbCl3quantum dots (QDs) codoped with Mn2+and Er3+(CsPbCl3:Mn2+, Er3+QDs) were mixed with ethylene-(vinyl acetate) (EVA) to form a film which was used as a luminescent down-shifting (LDS) layer. The LDS layer effectively improved the low utilization of near-ultraviolet light of c-Si solar cells. These CsPbCl3:Mn2+,Er3+QDs were synthesized via a conventional high-Temperature injection method. Mn2+is the luminescence center, and the incorporation of Er3+greatly enhances the luminescence intensity of Mn2+. The absolute photoluminescence quantum yield of the QDs dispersed in toluene reached 79.5% when the QDs were synthesized under the optimum conditions, that is, an injection temperature of 180 °C and Pb:Mn:Er preparation molar ratios of 6:4:4. The EVA film embedded with QDs at the optimum concentration (0.9 wt %) was used as an LDS layer for c-Si solar module. The short-circuit current (ISC) and the photoelectric conversion efficiency (η) were increased by 3.42% and 4.02%, respectively, owing to the LDS layer. Moreover, a luminescent solar concentrator (LSC) which was another application of luminescent materials was also demonstrated. For LSC, the relative changes in ISCand η by using the QDs-dispersed EVA film were +14.9% and +18.0%, respectively. These results indicate a feasible application of luminescent downshifting films in solar modules.

Original languageEnglish
Pages (from-to)2522-2531
Number of pages10
JournalACS Applied Nano Materials
Volume5
Issue number2
DOIs
Publication statusPublished - 2022 Feb 25

Keywords

  • CsPbCl
  • crystalline silicon solar cells
  • erbium doped
  • luminescent downshifting layer
  • manganese doped
  • perovskite quantum dots

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Feasibility of Emission-Enhanced CsPbCl3Quantum Dots Co-Doped with Mn2+and Er3+as Luminescent Downshifting Layers in Crystalline Silicon Solar Modules'. Together they form a unique fingerprint.

Cite this