Femtosecond Laser-Induced Graphitization of Transparent Cellulose Nanofiber Films

Fumiya Morosawa, Shuichiro Hayashi, Mitsuhiro Terakawa

Research output: Contribution to journalArticlepeer-review

Abstract

Laser graphitization allows for the spatially targeted modification of biomasses into electrically conductive structures and is a promising technique for the development of sustainable electronic devices. Out of the many biomasses, cellulose nanofiber (CNF) is a sustainable biomass which exhibits unique properties, such as mechanical strength and optical transparency. In this study, we demonstrated the fabrication of highly conductive graphitic carbon from CNFs using a high-repetition femtosecond laser. A conductivity as high as 6.9 S/cm was obtained by single scanning of the laser beam, which is estimated to be more than 100 times higher than the conductivity reported previously. From the Raman analysis of the structure, the formation of highly crystalline graphitic carbon was indicated, which contributes to the high conductivity. In the case of high-repetition femtosecond laser irradiation, it is considered that strong optical effects, in addition to thermal effects, contribute to the degradation of CNFs, resulting in the formation of highly crystalline graphitic carbon. Our presented technique allows for the direct writing of highly conductive graphitic carbon on CNF films, and the development of sustainable electronic devices, using mechanically robust and transparent CNF films as the substrate, should be realized.

Original languageEnglish
Pages (from-to)2955-2961
Number of pages7
JournalACS Sustainable Chemistry and Engineering
Volume9
Issue number7
DOIs
Publication statusPublished - 2021 Feb 22

Keywords

  • biomass
  • cellulose nanofiber
  • femtosecond laser
  • graphitic carbon
  • laser-induced graphitization
  • sustainable electronics

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Fingerprint Dive into the research topics of 'Femtosecond Laser-Induced Graphitization of Transparent Cellulose Nanofiber Films'. Together they form a unique fingerprint.

Cite this