Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

“White pigment cells” are derived from melanophore precursors and contain both melanophore-specific and iridophore-specific pigment organelles. Whereas melanophores differentiate in the wild type regenerating tail, white pigment cells appear in the regenerating tail in the periodic albino mutant (a<sup>p</sup>/a<sup>p</sup>) of Xenopus laevis. The localization and density of white pigment cells in the mutant regenerating tail are similar to those of melanophores in the wild type regenerating tail. Here, white pigment cells in the mutant regenerating tail have been compared with melanophores in the wild type regenerating tail in the presence of phenylthiourea (PTU), which inhibits melanosome maturation in melanophores but does not affect reflecting platelet formation in white pigment cells. Ultrastructural analysis shows that reflecting platelet formation in white pigment cells is different from that in iridophores. Reflecting platelets in iridophores are formed from spherical vesicles with electron-dense material, whereas they are formed from stage II melanosomes characteristic of melanophore precursors in white pigment cells. Ultrastructural features of pigment organelles, except reflecting platelets, are similar between mutant melanophores and white pigment cells. In an attempt to identify specific genes in white pigment cells, a subtracted cDNA library enriched for mutant cDNAs has been prepared. Subtracted cDNA fragments have been cloned and selected by whole mount in situ hybridization. Among cDNA fragments examined so far, the ferritin H subunit gene is specifically expressed in white pigment cells, but not in melanophores. Pigment organellogenesis and specific gene expression in white pigment cells are also discussed.

Original languageEnglish
Pages (from-to)733-744
Number of pages12
JournalCell and Tissue Research
Volume361
Issue number3
DOIs
Publication statusPublished - 2015 Sep 28

Fingerprint

Melanophores
Apoferritins
Melanosomes
Xenopus laevis
Blood Platelets
Tail
Genes
Complementary DNA
Organelles
Phenylthiourea
Gene Library
In Situ Hybridization

Keywords

  • Ferritin H subunit
  • Iridophore
  • Melanophore
  • Periodic albino
  • Xenopus laevis

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Cell Biology
  • Histology

Cite this

@article{733b2f21f7bd446e91cc1c74aa948846,
title = "Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis",
abstract = "“White pigment cells” are derived from melanophore precursors and contain both melanophore-specific and iridophore-specific pigment organelles. Whereas melanophores differentiate in the wild type regenerating tail, white pigment cells appear in the regenerating tail in the periodic albino mutant (ap/ap) of Xenopus laevis. The localization and density of white pigment cells in the mutant regenerating tail are similar to those of melanophores in the wild type regenerating tail. Here, white pigment cells in the mutant regenerating tail have been compared with melanophores in the wild type regenerating tail in the presence of phenylthiourea (PTU), which inhibits melanosome maturation in melanophores but does not affect reflecting platelet formation in white pigment cells. Ultrastructural analysis shows that reflecting platelet formation in white pigment cells is different from that in iridophores. Reflecting platelets in iridophores are formed from spherical vesicles with electron-dense material, whereas they are formed from stage II melanosomes characteristic of melanophore precursors in white pigment cells. Ultrastructural features of pigment organelles, except reflecting platelets, are similar between mutant melanophores and white pigment cells. In an attempt to identify specific genes in white pigment cells, a subtracted cDNA library enriched for mutant cDNAs has been prepared. Subtracted cDNA fragments have been cloned and selected by whole mount in situ hybridization. Among cDNA fragments examined so far, the ferritin H subunit gene is specifically expressed in white pigment cells, but not in melanophores. Pigment organellogenesis and specific gene expression in white pigment cells are also discussed.",
keywords = "Ferritin H subunit, Iridophore, Melanophore, Periodic albino, Xenopus laevis",
author = "Toshihiko Fukuzawa",
year = "2015",
month = "9",
day = "28",
doi = "10.1007/s00441-015-2133-8",
language = "English",
volume = "361",
pages = "733--744",
journal = "Cell and Tissue Research",
issn = "0302-766X",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis

AU - Fukuzawa, Toshihiko

PY - 2015/9/28

Y1 - 2015/9/28

N2 - “White pigment cells” are derived from melanophore precursors and contain both melanophore-specific and iridophore-specific pigment organelles. Whereas melanophores differentiate in the wild type regenerating tail, white pigment cells appear in the regenerating tail in the periodic albino mutant (ap/ap) of Xenopus laevis. The localization and density of white pigment cells in the mutant regenerating tail are similar to those of melanophores in the wild type regenerating tail. Here, white pigment cells in the mutant regenerating tail have been compared with melanophores in the wild type regenerating tail in the presence of phenylthiourea (PTU), which inhibits melanosome maturation in melanophores but does not affect reflecting platelet formation in white pigment cells. Ultrastructural analysis shows that reflecting platelet formation in white pigment cells is different from that in iridophores. Reflecting platelets in iridophores are formed from spherical vesicles with electron-dense material, whereas they are formed from stage II melanosomes characteristic of melanophore precursors in white pigment cells. Ultrastructural features of pigment organelles, except reflecting platelets, are similar between mutant melanophores and white pigment cells. In an attempt to identify specific genes in white pigment cells, a subtracted cDNA library enriched for mutant cDNAs has been prepared. Subtracted cDNA fragments have been cloned and selected by whole mount in situ hybridization. Among cDNA fragments examined so far, the ferritin H subunit gene is specifically expressed in white pigment cells, but not in melanophores. Pigment organellogenesis and specific gene expression in white pigment cells are also discussed.

AB - “White pigment cells” are derived from melanophore precursors and contain both melanophore-specific and iridophore-specific pigment organelles. Whereas melanophores differentiate in the wild type regenerating tail, white pigment cells appear in the regenerating tail in the periodic albino mutant (ap/ap) of Xenopus laevis. The localization and density of white pigment cells in the mutant regenerating tail are similar to those of melanophores in the wild type regenerating tail. Here, white pigment cells in the mutant regenerating tail have been compared with melanophores in the wild type regenerating tail in the presence of phenylthiourea (PTU), which inhibits melanosome maturation in melanophores but does not affect reflecting platelet formation in white pigment cells. Ultrastructural analysis shows that reflecting platelet formation in white pigment cells is different from that in iridophores. Reflecting platelets in iridophores are formed from spherical vesicles with electron-dense material, whereas they are formed from stage II melanosomes characteristic of melanophore precursors in white pigment cells. Ultrastructural features of pigment organelles, except reflecting platelets, are similar between mutant melanophores and white pigment cells. In an attempt to identify specific genes in white pigment cells, a subtracted cDNA library enriched for mutant cDNAs has been prepared. Subtracted cDNA fragments have been cloned and selected by whole mount in situ hybridization. Among cDNA fragments examined so far, the ferritin H subunit gene is specifically expressed in white pigment cells, but not in melanophores. Pigment organellogenesis and specific gene expression in white pigment cells are also discussed.

KW - Ferritin H subunit

KW - Iridophore

KW - Melanophore

KW - Periodic albino

KW - Xenopus laevis

UR - http://www.scopus.com/inward/record.url?scp=84940451025&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84940451025&partnerID=8YFLogxK

U2 - 10.1007/s00441-015-2133-8

DO - 10.1007/s00441-015-2133-8

M3 - Article

C2 - 25715760

AN - SCOPUS:84940451025

VL - 361

SP - 733

EP - 744

JO - Cell and Tissue Research

JF - Cell and Tissue Research

SN - 0302-766X

IS - 3

ER -