Abstract
This paper describes a fiber-shaped microscale tissue with blood vessel networks. We co-cultured Hep-G2 (Human hepatic epithelial cell line) and HUVEC (human umbilical endothelial cell) in a collagen/alginate core-shell hydrogel microfiber fabricated by using a microfluidic device. We observed difference in construction of blood vessel networks in the hepatic tissue by varying in the ratio of co-cultured cells and the diameter of the core. In addition, by arranging the fiber-shaped tissues to construct macroscale tissue assembly, we confirmed the connection of blood vessel networks between the assembled fiber-shaped tissues.
Original language | English |
---|---|
Title of host publication | 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems, MEMS 2017 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 247-250 |
Number of pages | 4 |
ISBN (Electronic) | 9781509050789 |
DOIs | |
Publication status | Published - 2017 Feb 23 |
Event | 30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017 - Las Vegas, United States Duration: 2017 Jan 22 → 2017 Jan 26 |
Other
Other | 30th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2017 |
---|---|
Country | United States |
City | Las Vegas |
Period | 17/1/22 → 17/1/26 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanical Engineering
- Electrical and Electronic Engineering