Field localization on a brane intersection in anti-de Sitter spacetime

Antonino Flachi, Masato Minamitsuji

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

We discuss the localization of scalar, fermion, and gauge field zero modes on a 3-brane that resides at the intersection of two 4-branes in six-dimensional anti-de Sitter space. This setup has been introduced in the context of braneworld models and, higher-dimensional versions of it, in string theory. In both six- and ten-dimensional cases, it has been shown that four-dimensional gravity can be reproduced at the intersection, due to the existence of a massless, localized graviton zero-mode. However, realistic scenarios require also the standard model to be localized on the 3-brane. In this paper, we discuss under which conditions a higher-dimensional field theory, propagating on the above geometry, can have a zero-mode sector localized at the intersection and find that zero modes can be localized only if masses and couplings to the background curvature satisfy certain relations. We also consider the case when other 4-branes cut the bulk at some distance from the intersection and argue that, in the probe brane approximation, there is no significant effect on the localization properties at the 3-brane. The case of bulk fermions is particularly interesting, since the properties of the geometry allow localization of chiral modes independently.

Original languageEnglish
Article number104021
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volume79
Issue number10
DOIs
Publication statusPublished - 2009 May 1
Externally publishedYes

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Field localization on a brane intersection in anti-de Sitter spacetime'. Together they form a unique fingerprint.

  • Cite this