First-principles study on energetics of c-BN(001) reconstructed surfaces

Jun Yamauchi, Masaru Tsukada, Satoshi Watanabe, Osamu Sugino

Research output: Contribution to journalArticle

428 Citations (Scopus)

Abstract

Total energies of cubic boron nitride (c-BN) (001) surfaces are systematically studied for various reconstructed configurations by the local density-functional approach with ultrasoft pseudopotentials. Stable phases as a function of nitrogen chemical potential are predicted theoretically. We examine the validity of the electron counting (EC) rule, which plays an important role for the study of the GaAs surfaces, and obtain supplemental factors to determine stable surface structures. The results of the total-energy minimization calculation demonstrate that the EC rule holds very well within the models that contain at most one layer with defects and no interlayer N-N and B-B bonds, and that next to the EC rule, the electrostatic energy has the most important role in determining stable structures. Furthermore, in the nitrogen-rich region, we found that the EC rule does not hold, because the energy difference between the N-B and N-N bonds is larger than the energy gain from using the EC model. We suggest that the important factors for determining stable structures of the C-BN(OO 1) surface are N-B bond saturation, the EC rule, and electrostatic energy, whose effect decreases in this order. The difference between c-BN and GaAs surfaces is also discussed.

Original languageEnglish
Pages (from-to)5586-5603
Number of pages18
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume54
Issue number8
Publication statusPublished - 1996 Aug 15
Externally publishedYes

Fingerprint

Cubic boron nitride
boron nitrides
counting
Electrons
electrons
energy
Electrostatics
Nitrogen
electrostatics
nitrogen
Chemical potential
Surface structure
pseudopotentials
interlayers
saturation
Defects
optimization
defects
configurations

ASJC Scopus subject areas

  • Condensed Matter Physics

Cite this

First-principles study on energetics of c-BN(001) reconstructed surfaces. / Yamauchi, Jun; Tsukada, Masaru; Watanabe, Satoshi; Sugino, Osamu.

In: Physical Review B - Condensed Matter and Materials Physics, Vol. 54, No. 8, 15.08.1996, p. 5586-5603.

Research output: Contribution to journalArticle

Yamauchi, Jun ; Tsukada, Masaru ; Watanabe, Satoshi ; Sugino, Osamu. / First-principles study on energetics of c-BN(001) reconstructed surfaces. In: Physical Review B - Condensed Matter and Materials Physics. 1996 ; Vol. 54, No. 8. pp. 5586-5603.
@article{379aedcd2dab4f66b7fa8e9b10e9439a,
title = "First-principles study on energetics of c-BN(001) reconstructed surfaces",
abstract = "Total energies of cubic boron nitride (c-BN) (001) surfaces are systematically studied for various reconstructed configurations by the local density-functional approach with ultrasoft pseudopotentials. Stable phases as a function of nitrogen chemical potential are predicted theoretically. We examine the validity of the electron counting (EC) rule, which plays an important role for the study of the GaAs surfaces, and obtain supplemental factors to determine stable surface structures. The results of the total-energy minimization calculation demonstrate that the EC rule holds very well within the models that contain at most one layer with defects and no interlayer N-N and B-B bonds, and that next to the EC rule, the electrostatic energy has the most important role in determining stable structures. Furthermore, in the nitrogen-rich region, we found that the EC rule does not hold, because the energy difference between the N-B and N-N bonds is larger than the energy gain from using the EC model. We suggest that the important factors for determining stable structures of the C-BN(OO 1) surface are N-B bond saturation, the EC rule, and electrostatic energy, whose effect decreases in this order. The difference between c-BN and GaAs surfaces is also discussed.",
author = "Jun Yamauchi and Masaru Tsukada and Satoshi Watanabe and Osamu Sugino",
year = "1996",
month = "8",
day = "15",
language = "English",
volume = "54",
pages = "5586--5603",
journal = "Physical Review B-Condensed Matter",
issn = "1098-0121",
publisher = "American Physical Society",
number = "8",

}

TY - JOUR

T1 - First-principles study on energetics of c-BN(001) reconstructed surfaces

AU - Yamauchi, Jun

AU - Tsukada, Masaru

AU - Watanabe, Satoshi

AU - Sugino, Osamu

PY - 1996/8/15

Y1 - 1996/8/15

N2 - Total energies of cubic boron nitride (c-BN) (001) surfaces are systematically studied for various reconstructed configurations by the local density-functional approach with ultrasoft pseudopotentials. Stable phases as a function of nitrogen chemical potential are predicted theoretically. We examine the validity of the electron counting (EC) rule, which plays an important role for the study of the GaAs surfaces, and obtain supplemental factors to determine stable surface structures. The results of the total-energy minimization calculation demonstrate that the EC rule holds very well within the models that contain at most one layer with defects and no interlayer N-N and B-B bonds, and that next to the EC rule, the electrostatic energy has the most important role in determining stable structures. Furthermore, in the nitrogen-rich region, we found that the EC rule does not hold, because the energy difference between the N-B and N-N bonds is larger than the energy gain from using the EC model. We suggest that the important factors for determining stable structures of the C-BN(OO 1) surface are N-B bond saturation, the EC rule, and electrostatic energy, whose effect decreases in this order. The difference between c-BN and GaAs surfaces is also discussed.

AB - Total energies of cubic boron nitride (c-BN) (001) surfaces are systematically studied for various reconstructed configurations by the local density-functional approach with ultrasoft pseudopotentials. Stable phases as a function of nitrogen chemical potential are predicted theoretically. We examine the validity of the electron counting (EC) rule, which plays an important role for the study of the GaAs surfaces, and obtain supplemental factors to determine stable surface structures. The results of the total-energy minimization calculation demonstrate that the EC rule holds very well within the models that contain at most one layer with defects and no interlayer N-N and B-B bonds, and that next to the EC rule, the electrostatic energy has the most important role in determining stable structures. Furthermore, in the nitrogen-rich region, we found that the EC rule does not hold, because the energy difference between the N-B and N-N bonds is larger than the energy gain from using the EC model. We suggest that the important factors for determining stable structures of the C-BN(OO 1) surface are N-B bond saturation, the EC rule, and electrostatic energy, whose effect decreases in this order. The difference between c-BN and GaAs surfaces is also discussed.

UR - http://www.scopus.com/inward/record.url?scp=0000873095&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0000873095&partnerID=8YFLogxK

M3 - Article

VL - 54

SP - 5586

EP - 5603

JO - Physical Review B-Condensed Matter

JF - Physical Review B-Condensed Matter

SN - 1098-0121

IS - 8

ER -