FMCW radar-based anomaly detection in toilet by supervised machine learning classifier

Wataru Takabatake, Kohei Yamamoto, Kentaro Toyoda, Tomoaki Ohtsuki, Yohei Shibata, Atsushi Nagate

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

With the increase in the population of elderly, a technique for monitoring them is receiving more and more attention all over the world. In particular, it is highly demanded to develop the system that detects a fainting elderly in a toilet, since such an accident is likely to get worse due to the late detection. In this paper, we propose an anomaly detection method in toilet using an FMCW(Frequency Modulated Continuous Wave) radar, which can measure the distance between an object and an FMCW radar. As anomalies, we determine as the situations where a subject faints while stooping on the toilet seat, leaning on the backrest, leaning on the side wall, and lying on the floor after the fall. With an FMCW radar, a fainting subject could be detected based on whether the estimated distance between a subject and an FMCW radar is almost constant. However, a subject might be sitting still, and also the distance to not a subject but a floor could be estimated depending on a subject's posture. To address this problem, in the proposed method, the time when the estimated distance is almost constant is detected, and then the detected time is classified into the time due to a faint or a non-faint by a supervised machine learning classifier. The used features are extracted based on the data, e.g., the estimated distance, just before the detected time. To evaluate the anomaly detection accuracy of the proposed method, we conducted the experiments to observe not only the aforementioned abnormal behavior but also the normal behavior, e.g., the button operation and sitting down. As a result, in terms of the classification of abnormal and normal behavior, our proposed method achieved the F- measure of 0.91, where F-measure is the overall score of recall and precision rates.

Original languageEnglish
Title of host publication2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728109626
DOIs
Publication statusPublished - 2019 Dec
Event2019 IEEE Global Communications Conference, GLOBECOM 2019 - Waikoloa, United States
Duration: 2019 Dec 92019 Dec 13

Publication series

Name2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings

Conference

Conference2019 IEEE Global Communications Conference, GLOBECOM 2019
CountryUnited States
CityWaikoloa
Period19/12/919/12/13

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Information Systems
  • Signal Processing
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Media Technology
  • Health Informatics

Fingerprint Dive into the research topics of 'FMCW radar-based anomaly detection in toilet by supervised machine learning classifier'. Together they form a unique fingerprint.

  • Cite this

    Takabatake, W., Yamamoto, K., Toyoda, K., Ohtsuki, T., Shibata, Y., & Nagate, A. (2019). FMCW radar-based anomaly detection in toilet by supervised machine learning classifier. In 2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings [9014123] (2019 IEEE Global Communications Conference, GLOBECOM 2019 - Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/GLOBECOM38437.2019.9014123