Force plate with simple mechanical springs and separated noncontact sensor elements

Research output: Contribution to journalArticlepeer-review

Abstract

This paper reports on a force plate (FP) using mechanical springs and noncontact distance sensors. The ground reaction force (GRF) is one of the factors for clarify biomechanics, and FPs are widely used to measure it. The sensor elements of conventional FPs are mainly strain gauges. Thus, the mechanical properties of FP depend on the sensor element performance. If the FP performance must change, we must redesign the FP, including changing the sensor elements. Here, we proposed an FP that uses a measuring principle based on simple springs and noncontact sensors. The shape and performance of the proposed FP are expected to change easily. As a prototype device, we designed and fabricated an FP installed with 12 springs and four sensors for human walking. A planar coil and magnet were used as the sensor elements, and the sensor output was proportional to the vertical and horizontal displacements. The FP resonance frequency was 123 Hz, which was larger than the required specification. The calibration experiments showed that vertical and horizontal forces and moments could be measured independently. The FP’s resolutions were 1.9 N and 1.4 N in the anterior–posterior and vertical directions, respectively. Furthermore, the fabricated FP measured GRF similarly to the commercial FP when a human walked on the plate. These results suggest that the proposed method will be helpful for FPs with custom-made requirements.

Original languageEnglish
Article number7092
JournalSensors
Volume21
Issue number21
DOIs
Publication statusPublished - 2021 Nov 1

Keywords

  • Force plate
  • Ground reaction force
  • Noncontact distance sensor

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Force plate with simple mechanical springs and separated noncontact sensor elements'. Together they form a unique fingerprint.

Cite this