Formation of Monocrystalline 1D and 2D Architectures via Epitaxial Attachment: Bottom-Up Routes through Surfactant-Mediated Arrays of Oriented Nanocrystals

Yoshitaka Nakagawa, Hiroyuki Kageyama, Yuya Oaki, Hiroaki Imai

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Monocrystalline architectures with well-defined shapes were achieved by bottom-up routes through epitaxial attachment of Mn3O4 nanocrystals. The crystallographically continuous 1D chains elongated in the a axis and 2D panels having large a or c faces were obtained by removal of the organic mediator from surfactant-mediated 1D and 2D arrays of Mn3O4 nanocrystals, respectively. Our basal approach indicates that the epitaxial attachment through the surfactant-mediated arrays is utilized for fabrication of a wide variety of micrometric architectures from nanometric crystalline units.

Original languageEnglish
Pages (from-to)6197-6201
Number of pages5
JournalLangmuir
Volume31
Issue number22
DOIs
Publication statusPublished - 2015 Jun 9

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Formation of Monocrystalline 1D and 2D Architectures via Epitaxial Attachment: Bottom-Up Routes through Surfactant-Mediated Arrays of Oriented Nanocrystals'. Together they form a unique fingerprint.

Cite this