Forming structure-H hydrates using water spraying in methane gas

Effects of chemical species of large-molecule guest substances

Hideyuki Tsuji, Ryo Ohmura, Yasuhiko H. Mori

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

The rate of structure-H hydrate formation has been studied experimentally to explore the possibility of storing and transporting natural gas in the form of structure-H hydrates. The experimental procedure for forming structure-H hydrates used in this study followed the one conceived in our previous study (Ohmura et al., Energy Fuels 2002, 16, 1141-1147)-i.e., spraying liquid water down through methane gas onto a liquid LMGS layer lying on a pool of water, where LMGS means a large-molecule guest substance which provides guest molecules to fit into the 51268 cages of a structure-H hydrate. In addition to methylcyclohexane, the only LMGS used in our previous study, five other LMGS candidates were tested: 2,2-dimethylbutane (neohexane), tert-butyl methyl ether, 3-methyl-l-butanol (isoamyl alcohol), 3,3-dimethyl-2-butanone (pinacolone), and 2-methylcyclohexanone. On the basis of the experimental results obtained at a prescribed temperature-pressure condition (275 K, 2.9 MPa), we conclude that the rate of structure-H hydrate formation (evaluated as the rate of methane-gas consumption) depends strongly on the species of the LMGS used. Depending on the selection of the LMGS, the rate could exceed that for the structure-I methane hydrate that would form at a much higher pressure in the absence of any LMGS. The rates of hydrate formation observed with different LMGSs are not correlated uniformly with a simple thermodynamic driving force, such as the deviation of the temperature-pressure condition set in each experiment from the corresponding four-phase (methane/LMGS/water/hydrate) equilibrium condition. This paper gives a data-based discussion of what factors control the rate of structure-H hydrate formation in water-spraying-type hydrate reactors, and recommends tert-butyl methyl ether as a promising LMGS for practical hydrate-forming operations.

Original languageEnglish
Pages (from-to)418-424
Number of pages7
JournalEnergy and Fuels
Volume18
Issue number2
DOIs
Publication statusPublished - 2004 Mar
Externally publishedYes

Fingerprint

Methane
Spraying
Hydrates
Gases
Hydrogen
Molecules
Water
Ethers
Butanols
Liquids
Butenes
Natural gas
Alcohols
Thermodynamics
Temperature

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Energy Engineering and Power Technology
  • Fuel Technology

Cite this

Forming structure-H hydrates using water spraying in methane gas : Effects of chemical species of large-molecule guest substances. / Tsuji, Hideyuki; Ohmura, Ryo; Mori, Yasuhiko H.

In: Energy and Fuels, Vol. 18, No. 2, 03.2004, p. 418-424.

Research output: Contribution to journalArticle

@article{44ddc8c3885846a79dc626e38281d232,
title = "Forming structure-H hydrates using water spraying in methane gas: Effects of chemical species of large-molecule guest substances",
abstract = "The rate of structure-H hydrate formation has been studied experimentally to explore the possibility of storing and transporting natural gas in the form of structure-H hydrates. The experimental procedure for forming structure-H hydrates used in this study followed the one conceived in our previous study (Ohmura et al., Energy Fuels 2002, 16, 1141-1147)-i.e., spraying liquid water down through methane gas onto a liquid LMGS layer lying on a pool of water, where LMGS means a large-molecule guest substance which provides guest molecules to fit into the 51268 cages of a structure-H hydrate. In addition to methylcyclohexane, the only LMGS used in our previous study, five other LMGS candidates were tested: 2,2-dimethylbutane (neohexane), tert-butyl methyl ether, 3-methyl-l-butanol (isoamyl alcohol), 3,3-dimethyl-2-butanone (pinacolone), and 2-methylcyclohexanone. On the basis of the experimental results obtained at a prescribed temperature-pressure condition (275 K, 2.9 MPa), we conclude that the rate of structure-H hydrate formation (evaluated as the rate of methane-gas consumption) depends strongly on the species of the LMGS used. Depending on the selection of the LMGS, the rate could exceed that for the structure-I methane hydrate that would form at a much higher pressure in the absence of any LMGS. The rates of hydrate formation observed with different LMGSs are not correlated uniformly with a simple thermodynamic driving force, such as the deviation of the temperature-pressure condition set in each experiment from the corresponding four-phase (methane/LMGS/water/hydrate) equilibrium condition. This paper gives a data-based discussion of what factors control the rate of structure-H hydrate formation in water-spraying-type hydrate reactors, and recommends tert-butyl methyl ether as a promising LMGS for practical hydrate-forming operations.",
author = "Hideyuki Tsuji and Ryo Ohmura and Mori, {Yasuhiko H.}",
year = "2004",
month = "3",
doi = "10.1021/ef034054g",
language = "English",
volume = "18",
pages = "418--424",
journal = "Energy & Fuels",
issn = "0887-0624",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Forming structure-H hydrates using water spraying in methane gas

T2 - Effects of chemical species of large-molecule guest substances

AU - Tsuji, Hideyuki

AU - Ohmura, Ryo

AU - Mori, Yasuhiko H.

PY - 2004/3

Y1 - 2004/3

N2 - The rate of structure-H hydrate formation has been studied experimentally to explore the possibility of storing and transporting natural gas in the form of structure-H hydrates. The experimental procedure for forming structure-H hydrates used in this study followed the one conceived in our previous study (Ohmura et al., Energy Fuels 2002, 16, 1141-1147)-i.e., spraying liquid water down through methane gas onto a liquid LMGS layer lying on a pool of water, where LMGS means a large-molecule guest substance which provides guest molecules to fit into the 51268 cages of a structure-H hydrate. In addition to methylcyclohexane, the only LMGS used in our previous study, five other LMGS candidates were tested: 2,2-dimethylbutane (neohexane), tert-butyl methyl ether, 3-methyl-l-butanol (isoamyl alcohol), 3,3-dimethyl-2-butanone (pinacolone), and 2-methylcyclohexanone. On the basis of the experimental results obtained at a prescribed temperature-pressure condition (275 K, 2.9 MPa), we conclude that the rate of structure-H hydrate formation (evaluated as the rate of methane-gas consumption) depends strongly on the species of the LMGS used. Depending on the selection of the LMGS, the rate could exceed that for the structure-I methane hydrate that would form at a much higher pressure in the absence of any LMGS. The rates of hydrate formation observed with different LMGSs are not correlated uniformly with a simple thermodynamic driving force, such as the deviation of the temperature-pressure condition set in each experiment from the corresponding four-phase (methane/LMGS/water/hydrate) equilibrium condition. This paper gives a data-based discussion of what factors control the rate of structure-H hydrate formation in water-spraying-type hydrate reactors, and recommends tert-butyl methyl ether as a promising LMGS for practical hydrate-forming operations.

AB - The rate of structure-H hydrate formation has been studied experimentally to explore the possibility of storing and transporting natural gas in the form of structure-H hydrates. The experimental procedure for forming structure-H hydrates used in this study followed the one conceived in our previous study (Ohmura et al., Energy Fuels 2002, 16, 1141-1147)-i.e., spraying liquid water down through methane gas onto a liquid LMGS layer lying on a pool of water, where LMGS means a large-molecule guest substance which provides guest molecules to fit into the 51268 cages of a structure-H hydrate. In addition to methylcyclohexane, the only LMGS used in our previous study, five other LMGS candidates were tested: 2,2-dimethylbutane (neohexane), tert-butyl methyl ether, 3-methyl-l-butanol (isoamyl alcohol), 3,3-dimethyl-2-butanone (pinacolone), and 2-methylcyclohexanone. On the basis of the experimental results obtained at a prescribed temperature-pressure condition (275 K, 2.9 MPa), we conclude that the rate of structure-H hydrate formation (evaluated as the rate of methane-gas consumption) depends strongly on the species of the LMGS used. Depending on the selection of the LMGS, the rate could exceed that for the structure-I methane hydrate that would form at a much higher pressure in the absence of any LMGS. The rates of hydrate formation observed with different LMGSs are not correlated uniformly with a simple thermodynamic driving force, such as the deviation of the temperature-pressure condition set in each experiment from the corresponding four-phase (methane/LMGS/water/hydrate) equilibrium condition. This paper gives a data-based discussion of what factors control the rate of structure-H hydrate formation in water-spraying-type hydrate reactors, and recommends tert-butyl methyl ether as a promising LMGS for practical hydrate-forming operations.

UR - http://www.scopus.com/inward/record.url?scp=1842562909&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1842562909&partnerID=8YFLogxK

U2 - 10.1021/ef034054g

DO - 10.1021/ef034054g

M3 - Article

VL - 18

SP - 418

EP - 424

JO - Energy & Fuels

JF - Energy & Fuels

SN - 0887-0624

IS - 2

ER -