Abstract
Granular cell tumors (GCTs) are rare mesenchymal tumors that exhibit a characteristic morphology and a finely granular cytoplasm. The genetic alterations responsible for GCT tumorigenesis had been unknown until recently, when loss-of-function mutations of ATP6AP1 and ATP6AP2 were described. Thus, we performed whole-exome sequencing, RNA sequencing, and targeted sequencing of 51 GCT samples. From these genomic analyses, we identified mutations in genes encoding vacuolar H + -ATPase (V-ATPase) components, including ATP6AP1 and ATP6AP2, in 33 (65%) GCTs. ATP6AP1 and ATP6AP2 mutations were found in 23 (45%) and 2 (4%) samples, respectively, and all were truncating or splice site mutations. In addition, seven other genes encoding V-ATPase components were also mutated, and three mutations in ATP6V0C occurred on the same amino acid (isoleucine 136). These V-ATPase component gene mutations were mutually exclusive, with one exception. These results suggest that V-ATPase function is impaired in GCTs not only by loss-of-function mutations of ATP6AP1 and ATP6AP2 but also through mutations of other subunits. Our findings provide additional support for the hypothesis that V-ATPase dysfunction promotes GCT tumorigenesis.
Original language | English |
---|---|
Pages (from-to) | 373-380 |
Number of pages | 8 |
Journal | Genes Chromosomes and Cancer |
Volume | 58 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 Jun |
Keywords
- V-ATPase
- genomic profiling
- granular cell tumor
ASJC Scopus subject areas
- Genetics
- Cancer Research