G-CSF and HGF: Combination of vasculogenesis and angiogenesis synergistically improves recovery in murine hind limb ischemia

Yasuyo Ieda, Jun Fujita, Masaki Ieda, Takashi Yagi, Hiroshi Kawada, Kiyoshi Ando, Keiichi Fukuda

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Granulocyte colony-stimulating factor (G-CSF) is known to mobilize bone marrow stem cells into the peripheral circulation. This study was designed to investigate whether G-CSF by itself or in combination with hepatocyte growth factor (HGF) can promote vasculogenesis and angiogenesis in murine hind limb ischemia. Hind limb ischemia was induced in BALB/c nude or C57/BL6 mice that received bone marrow transplantation from green fluorescent protein (GFP)-transgenic mice. In the HGF group, hHGF expression plasmid was injected into the ischemic muscles. In the G-CSF group, G-CSF was administered subcutaneously for 10 days. The G-CSF + HGF group was concomitantly treated with G-CSF and HGF, and the control group received no treatment. All effects were confirmed at 4 weeks. The G-CSF + HGF group had a higher laser Doppler blood perfusion index, higher microvessel density, and a lower incidence of hind limb necrosis than the other groups. Confocal laser microscopy revealed that a number of GFP-positive cells infiltrated to the vasculature of the ischemic area. Some of the GFP positive cells were clearly co-immunostained with α-smooth muscle actin as well as von Willebrand factor. G-CSF-mobilized stem cells co-expressed CD49d and CD34, which would have promoted their adhesion to cells in the ischemic muscle that expressed HGF-induced vascular cell adhesion molecule-1. The combination of G-CSF and HGF had a significant synergistic effect, suggesting that the combination of mobilization of stem cells from bone marrow to peripheral circulation and their recruitment to the ischemic area might potentiate angiogenesis and vasculogenesis.

Original languageEnglish
Pages (from-to)540-548
Number of pages9
JournalJournal of Molecular and Cellular Cardiology
Volume42
Issue number3
DOIs
Publication statusPublished - 2007 Mar 1

    Fingerprint

Keywords

  • Angiogenesis
  • Granulocyte colony-stimulating factor
  • Hepatocyte growth factor
  • Ischemia
  • Vasculogenesis

ASJC Scopus subject areas

  • Molecular Biology
  • Cardiology and Cardiovascular Medicine

Cite this