TY - JOUR
T1 - Gene therapy to inhibit the calcium channel β subunit
T2 - Physiological consequences and pathophysiological effects in models of cardiac hypertrophy
AU - Cingolani, Eugenio
AU - Correa, Genaro A.Ramirez
AU - Kizana, Eddy
AU - Murata, Mitsushige
AU - Cho, Hee Cheol
AU - Marbán, Eduardo
PY - 2007/7
Y1 - 2007/7
N2 - Calcium cycling figures prominently in excitation-contraction coupling and in various signaling cascades involved in the development of left ventricular hypertrophy. We hypothesized that genetic suppression of the L-type calcium channel accessory β-subunit would modulate calcium current and suppress cardiac hypertrophy. A short hairpin RNA template sequence capable of mediating the knockdown of the L-type calcium channel accessory β-subunit gene was incorporated into a lentiviral vector (PPT.CG.H1.β2). Transduction of ventricular myocytes in vivo with the active short hairpin RNA partially inhibited the L-type calcium current. In neonatal rat cardiomyocytes, L-type calcium channel accessory β-subunit gene knockdown reduced calcium transient amplitude. Similarly, [H]leucine incorporation was attenuated in PPT.CG.H1.β2-transduced neonatal rat cardiomyocytes compared with nonsilencing controls in a phenylephrine-induced hypertrophy model. In vivo gene transfer attenuated the hypertrophic response in an aortic-banded rat model of left ventricular hypertrophy, with reduced left ventricular wall thickness and heart weight/body weight ratios in PPT.CG.H1.β2-injected rats at four weeks post transduction. Fractional shortening was preserved in rats treated with PPT.CG.H1.β2. These findings indicate that knockdown of L-type calcium channel accessory β-subunit is capable of attenuating the hypertrophic response both in vitro and in vivo without compromising systolic performance. Suppression of the calcium channel β subunit may represent a novel and useful therapeutic strategy for left ventricular hypertrophy.
AB - Calcium cycling figures prominently in excitation-contraction coupling and in various signaling cascades involved in the development of left ventricular hypertrophy. We hypothesized that genetic suppression of the L-type calcium channel accessory β-subunit would modulate calcium current and suppress cardiac hypertrophy. A short hairpin RNA template sequence capable of mediating the knockdown of the L-type calcium channel accessory β-subunit gene was incorporated into a lentiviral vector (PPT.CG.H1.β2). Transduction of ventricular myocytes in vivo with the active short hairpin RNA partially inhibited the L-type calcium current. In neonatal rat cardiomyocytes, L-type calcium channel accessory β-subunit gene knockdown reduced calcium transient amplitude. Similarly, [H]leucine incorporation was attenuated in PPT.CG.H1.β2-transduced neonatal rat cardiomyocytes compared with nonsilencing controls in a phenylephrine-induced hypertrophy model. In vivo gene transfer attenuated the hypertrophic response in an aortic-banded rat model of left ventricular hypertrophy, with reduced left ventricular wall thickness and heart weight/body weight ratios in PPT.CG.H1.β2-injected rats at four weeks post transduction. Fractional shortening was preserved in rats treated with PPT.CG.H1.β2. These findings indicate that knockdown of L-type calcium channel accessory β-subunit is capable of attenuating the hypertrophic response both in vitro and in vivo without compromising systolic performance. Suppression of the calcium channel β subunit may represent a novel and useful therapeutic strategy for left ventricular hypertrophy.
KW - Calcium
KW - Gene therapy
KW - Hypertrophy
UR - http://www.scopus.com/inward/record.url?scp=34547559614&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547559614&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.107.155721
DO - 10.1161/CIRCRESAHA.107.155721
M3 - Article
C2 - 17556655
AN - SCOPUS:34547559614
SN - 0009-7330
VL - 101
SP - 166
EP - 175
JO - Circulation Research
JF - Circulation Research
IS - 2
ER -