Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis - A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma

Yutaka Kondo, Yae Kanai, Michiie Sakamoto, Masashi Mizokami, Ryuzo Ueda, Setsuo Hirohashi

Research output: Contribution to journalArticle

220 Citations (Scopus)

Abstract

A study was conducted to examine the significance of genetic instability and aberrant DNA methylation during hepatocarcinogenesis. Genomic DNA was extracted from 196 microdissected specimens of noncancerous liver tissue that showed no marked histologic findings or findings compatible with chronic hepatitis or cirrhosis, and 80 corresponding microdissected specimens of hepatocellular carcinoma (HCC) from 40 patients. Loss of heterozygosity (LOH) and microsatellite instability (MSI) were examined by polymerase chain reaction (PCR) using 39 microsatellite markers, and DNA methylation status on 8 CpG islands was examined by bisulfite-PCR. In noncancerous liver tissues, LOH, MSI, and DNA hypermethylation were found in 15 (38%), 6 (15%), and 33 (83%) of 40 cases, respectively. The incidence of DNA hypermethylation in histologically normal liver was similar to that in chronic hepatitis and cirrhosis, although neither LOH nor MSI was found in histologically normal liver. In cancerous tissues, LOH, MSI, and DNA hypermethylation were found in 39 (98%), 8 (20%), and 40 (100%) of 40 cases, respectively. CpG islands of the p16 gene and methylated in tumor 1, 2, 12, and 31 clones were frequently methylated in cancerous tissues, although neither the thrombospondin-1 nor the human Mut L homologue (hMLH1) gene was methylated. Absence of silencing of the hMLH1 gene by DNA hypermethylation is consistent with the low incidence of MSI in HCCs. The results of this study indicate that LOH and aberrant DNA methylation contribute to hepatocarcinogenesis; DNA hypermethylation in particular, which precedes or may even cause LOH, is as an early event during hepatocarcinogenesis.

Original languageEnglish
Pages (from-to)970-979
Number of pages10
JournalHepatology
Volume32
Issue number5
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

Microsatellite Instability
CpG Islands
Loss of Heterozygosity
DNA Methylation
Chronic Hepatitis
Hepatocellular Carcinoma
Fibrosis
DNA
Liver
p16 Genes
Thrombospondin 1
Polymerase Chain Reaction
Incidence
Gene Silencing
Microsatellite Repeats
Clone Cells
Genes
Neoplasms

ASJC Scopus subject areas

  • Hepatology

Cite this

@article{4d29f0d6f1d244febca313a7ea7ebbef,
title = "Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis - A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma",
abstract = "A study was conducted to examine the significance of genetic instability and aberrant DNA methylation during hepatocarcinogenesis. Genomic DNA was extracted from 196 microdissected specimens of noncancerous liver tissue that showed no marked histologic findings or findings compatible with chronic hepatitis or cirrhosis, and 80 corresponding microdissected specimens of hepatocellular carcinoma (HCC) from 40 patients. Loss of heterozygosity (LOH) and microsatellite instability (MSI) were examined by polymerase chain reaction (PCR) using 39 microsatellite markers, and DNA methylation status on 8 CpG islands was examined by bisulfite-PCR. In noncancerous liver tissues, LOH, MSI, and DNA hypermethylation were found in 15 (38{\%}), 6 (15{\%}), and 33 (83{\%}) of 40 cases, respectively. The incidence of DNA hypermethylation in histologically normal liver was similar to that in chronic hepatitis and cirrhosis, although neither LOH nor MSI was found in histologically normal liver. In cancerous tissues, LOH, MSI, and DNA hypermethylation were found in 39 (98{\%}), 8 (20{\%}), and 40 (100{\%}) of 40 cases, respectively. CpG islands of the p16 gene and methylated in tumor 1, 2, 12, and 31 clones were frequently methylated in cancerous tissues, although neither the thrombospondin-1 nor the human Mut L homologue (hMLH1) gene was methylated. Absence of silencing of the hMLH1 gene by DNA hypermethylation is consistent with the low incidence of MSI in HCCs. The results of this study indicate that LOH and aberrant DNA methylation contribute to hepatocarcinogenesis; DNA hypermethylation in particular, which precedes or may even cause LOH, is as an early event during hepatocarcinogenesis.",
author = "Yutaka Kondo and Yae Kanai and Michiie Sakamoto and Masashi Mizokami and Ryuzo Ueda and Setsuo Hirohashi",
year = "2000",
language = "English",
volume = "32",
pages = "970--979",
journal = "Hepatology",
issn = "0270-9139",
publisher = "John Wiley and Sons Ltd",
number = "5",

}

TY - JOUR

T1 - Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis - A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma

AU - Kondo, Yutaka

AU - Kanai, Yae

AU - Sakamoto, Michiie

AU - Mizokami, Masashi

AU - Ueda, Ryuzo

AU - Hirohashi, Setsuo

PY - 2000

Y1 - 2000

N2 - A study was conducted to examine the significance of genetic instability and aberrant DNA methylation during hepatocarcinogenesis. Genomic DNA was extracted from 196 microdissected specimens of noncancerous liver tissue that showed no marked histologic findings or findings compatible with chronic hepatitis or cirrhosis, and 80 corresponding microdissected specimens of hepatocellular carcinoma (HCC) from 40 patients. Loss of heterozygosity (LOH) and microsatellite instability (MSI) were examined by polymerase chain reaction (PCR) using 39 microsatellite markers, and DNA methylation status on 8 CpG islands was examined by bisulfite-PCR. In noncancerous liver tissues, LOH, MSI, and DNA hypermethylation were found in 15 (38%), 6 (15%), and 33 (83%) of 40 cases, respectively. The incidence of DNA hypermethylation in histologically normal liver was similar to that in chronic hepatitis and cirrhosis, although neither LOH nor MSI was found in histologically normal liver. In cancerous tissues, LOH, MSI, and DNA hypermethylation were found in 39 (98%), 8 (20%), and 40 (100%) of 40 cases, respectively. CpG islands of the p16 gene and methylated in tumor 1, 2, 12, and 31 clones were frequently methylated in cancerous tissues, although neither the thrombospondin-1 nor the human Mut L homologue (hMLH1) gene was methylated. Absence of silencing of the hMLH1 gene by DNA hypermethylation is consistent with the low incidence of MSI in HCCs. The results of this study indicate that LOH and aberrant DNA methylation contribute to hepatocarcinogenesis; DNA hypermethylation in particular, which precedes or may even cause LOH, is as an early event during hepatocarcinogenesis.

AB - A study was conducted to examine the significance of genetic instability and aberrant DNA methylation during hepatocarcinogenesis. Genomic DNA was extracted from 196 microdissected specimens of noncancerous liver tissue that showed no marked histologic findings or findings compatible with chronic hepatitis or cirrhosis, and 80 corresponding microdissected specimens of hepatocellular carcinoma (HCC) from 40 patients. Loss of heterozygosity (LOH) and microsatellite instability (MSI) were examined by polymerase chain reaction (PCR) using 39 microsatellite markers, and DNA methylation status on 8 CpG islands was examined by bisulfite-PCR. In noncancerous liver tissues, LOH, MSI, and DNA hypermethylation were found in 15 (38%), 6 (15%), and 33 (83%) of 40 cases, respectively. The incidence of DNA hypermethylation in histologically normal liver was similar to that in chronic hepatitis and cirrhosis, although neither LOH nor MSI was found in histologically normal liver. In cancerous tissues, LOH, MSI, and DNA hypermethylation were found in 39 (98%), 8 (20%), and 40 (100%) of 40 cases, respectively. CpG islands of the p16 gene and methylated in tumor 1, 2, 12, and 31 clones were frequently methylated in cancerous tissues, although neither the thrombospondin-1 nor the human Mut L homologue (hMLH1) gene was methylated. Absence of silencing of the hMLH1 gene by DNA hypermethylation is consistent with the low incidence of MSI in HCCs. The results of this study indicate that LOH and aberrant DNA methylation contribute to hepatocarcinogenesis; DNA hypermethylation in particular, which precedes or may even cause LOH, is as an early event during hepatocarcinogenesis.

UR - http://www.scopus.com/inward/record.url?scp=0033765496&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033765496&partnerID=8YFLogxK

M3 - Article

C2 - 11050047

AN - SCOPUS:0033765496

VL - 32

SP - 970

EP - 979

JO - Hepatology

JF - Hepatology

SN - 0270-9139

IS - 5

ER -