Geometric, electronic, and optical properties of a superatomic heterodimer and trimer: Sc@Si 16-V@Si 16 and Sc@Si 16- Ti@Si 16-V@Si 16

Takeshi Iwasa, Atsushi Nakajima

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The geometric, electronic, and optical properties of a heterodimer and trimer consisting of metal-encapsulating silicon cage clusters, M@Si 16 (M = Sc, Ti, V) with D 4d symmetry, are studied using density functional computations to explore the possibility of using these clusters as building blocks for a nanometer scale heteroassembly. In this study, among the possible low-lying geometries, the linear-form of the hetero-oligomers is adopted as a model system, where the D 4d monomers are covalently bonded by facing their squares in an eclipsed fashion. The heterodimer consisting of halogen-like Sc@Si 16 and alkaline-like V@Si 16 has a dipole moment of 7.63 D, and its occupied and virtual frontier orbitals are localized to V@Si 16 and to Sc@Si 16, respectively. Some of the inner molecular orbitals exhibit superatomic bonding and antibonding character. The electronic excitations involve charge-transfer states mainly from V@Si 16 to Sc@Si 16 in the optical energy region. The linear heterotrimer of Sc@Si 16-Ti@Si 16- V@Si 16, formed by inserting the rare-gas-like Ti@Si 16, has a larger dipole moment of 15.6 D and one or more localized frontier orbitals compared to the dimer. We propose possible formation routes to realize the present hetero-oligomers using photoexcitation or energy-selective electron injection into several LUMOs of the monomers that are suitable for linear-oligomerization.

Original languageEnglish
Pages (from-to)14071-14077
Number of pages7
JournalJournal of Physical Chemistry C
Volume116
Issue number26
DOIs
Publication statusPublished - 2012 Jul 5

Fingerprint

Dipole moment
trimers
oligomers
Oligomers
Electronic properties
dipole moments
Optical properties
monomers
Monomers
Noble Gases
optical properties
orbitals
Oligomerization
Electron injection
Halogens
encapsulating
Photoexcitation
Molecular orbitals
Silicon
Inert gases

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films
  • Energy(all)

Cite this

@article{bfa4734add074de8a38130ad6135dcff,
title = "Geometric, electronic, and optical properties of a superatomic heterodimer and trimer: Sc@Si 16-V@Si 16 and Sc@Si 16- Ti@Si 16-V@Si 16",
abstract = "The geometric, electronic, and optical properties of a heterodimer and trimer consisting of metal-encapsulating silicon cage clusters, M@Si 16 (M = Sc, Ti, V) with D 4d symmetry, are studied using density functional computations to explore the possibility of using these clusters as building blocks for a nanometer scale heteroassembly. In this study, among the possible low-lying geometries, the linear-form of the hetero-oligomers is adopted as a model system, where the D 4d monomers are covalently bonded by facing their squares in an eclipsed fashion. The heterodimer consisting of halogen-like Sc@Si 16 and alkaline-like V@Si 16 has a dipole moment of 7.63 D, and its occupied and virtual frontier orbitals are localized to V@Si 16 and to Sc@Si 16, respectively. Some of the inner molecular orbitals exhibit superatomic bonding and antibonding character. The electronic excitations involve charge-transfer states mainly from V@Si 16 to Sc@Si 16 in the optical energy region. The linear heterotrimer of Sc@Si 16-Ti@Si 16- V@Si 16, formed by inserting the rare-gas-like Ti@Si 16, has a larger dipole moment of 15.6 D and one or more localized frontier orbitals compared to the dimer. We propose possible formation routes to realize the present hetero-oligomers using photoexcitation or energy-selective electron injection into several LUMOs of the monomers that are suitable for linear-oligomerization.",
author = "Takeshi Iwasa and Atsushi Nakajima",
year = "2012",
month = "7",
day = "5",
doi = "10.1021/jp302752g",
language = "English",
volume = "116",
pages = "14071--14077",
journal = "Journal of Physical Chemistry C",
issn = "1932-7447",
publisher = "American Chemical Society",
number = "26",

}

TY - JOUR

T1 - Geometric, electronic, and optical properties of a superatomic heterodimer and trimer

T2 - Sc@Si 16-V@Si 16 and Sc@Si 16- Ti@Si 16-V@Si 16

AU - Iwasa, Takeshi

AU - Nakajima, Atsushi

PY - 2012/7/5

Y1 - 2012/7/5

N2 - The geometric, electronic, and optical properties of a heterodimer and trimer consisting of metal-encapsulating silicon cage clusters, M@Si 16 (M = Sc, Ti, V) with D 4d symmetry, are studied using density functional computations to explore the possibility of using these clusters as building blocks for a nanometer scale heteroassembly. In this study, among the possible low-lying geometries, the linear-form of the hetero-oligomers is adopted as a model system, where the D 4d monomers are covalently bonded by facing their squares in an eclipsed fashion. The heterodimer consisting of halogen-like Sc@Si 16 and alkaline-like V@Si 16 has a dipole moment of 7.63 D, and its occupied and virtual frontier orbitals are localized to V@Si 16 and to Sc@Si 16, respectively. Some of the inner molecular orbitals exhibit superatomic bonding and antibonding character. The electronic excitations involve charge-transfer states mainly from V@Si 16 to Sc@Si 16 in the optical energy region. The linear heterotrimer of Sc@Si 16-Ti@Si 16- V@Si 16, formed by inserting the rare-gas-like Ti@Si 16, has a larger dipole moment of 15.6 D and one or more localized frontier orbitals compared to the dimer. We propose possible formation routes to realize the present hetero-oligomers using photoexcitation or energy-selective electron injection into several LUMOs of the monomers that are suitable for linear-oligomerization.

AB - The geometric, electronic, and optical properties of a heterodimer and trimer consisting of metal-encapsulating silicon cage clusters, M@Si 16 (M = Sc, Ti, V) with D 4d symmetry, are studied using density functional computations to explore the possibility of using these clusters as building blocks for a nanometer scale heteroassembly. In this study, among the possible low-lying geometries, the linear-form of the hetero-oligomers is adopted as a model system, where the D 4d monomers are covalently bonded by facing their squares in an eclipsed fashion. The heterodimer consisting of halogen-like Sc@Si 16 and alkaline-like V@Si 16 has a dipole moment of 7.63 D, and its occupied and virtual frontier orbitals are localized to V@Si 16 and to Sc@Si 16, respectively. Some of the inner molecular orbitals exhibit superatomic bonding and antibonding character. The electronic excitations involve charge-transfer states mainly from V@Si 16 to Sc@Si 16 in the optical energy region. The linear heterotrimer of Sc@Si 16-Ti@Si 16- V@Si 16, formed by inserting the rare-gas-like Ti@Si 16, has a larger dipole moment of 15.6 D and one or more localized frontier orbitals compared to the dimer. We propose possible formation routes to realize the present hetero-oligomers using photoexcitation or energy-selective electron injection into several LUMOs of the monomers that are suitable for linear-oligomerization.

UR - http://www.scopus.com/inward/record.url?scp=84863682015&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863682015&partnerID=8YFLogxK

U2 - 10.1021/jp302752g

DO - 10.1021/jp302752g

M3 - Article

AN - SCOPUS:84863682015

VL - 116

SP - 14071

EP - 14077

JO - Journal of Physical Chemistry C

JF - Journal of Physical Chemistry C

SN - 1932-7447

IS - 26

ER -