TY - JOUR
T1 - Green analytical method for the simultaneous analysis of cytochrome P450 probe substrates by poly(N-isopropylacrylamide)-based temperature-responsive chromatography
AU - Maekawa, Yutaro
AU - Okamoto, Naoya
AU - Okada, Yuji
AU - Nagase, Kenichi
AU - Kanazawa, Hideko
N1 - Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - High-performance liquid chromatography (HPLC) is the most common analytical method practiced in various fields and used for analysis of almost all drug compounds in the pharmaceutical industries. During drug development, an evaluation of potential drug interaction with cytochrome P450 (CYP) is essential. A “cocktail” approach is often used in drug development to evaluate the effect of a drug candidate on multiple CYP enzymes in a single experiment. So far, simultaneous analysis of multiple CYP substrates, which have greatly different structure and physicochemical properties, has required organic solvents and mobile phase gradient methods. However, despite the recent emphasis on environmental protection, analytical methods that use only aqueous solvents without the use of organic solvents for separation have not been studied well. This study sought to develop the simultaneous analysis of multiple CYP substrates by using poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive chromatography with only aqueous solvents and isocratic methods. Good separation of multiple CYP substrates was achieved without using organic solvents and any gradient methods by temperature-responsive chromatography utilizing a P(NIPAAm-co-n-butyl methacrylate (BMA))- and P(NIPAAm-co-N-acryloyl L-tryptophan methyl ester (L-Trp-OMe))-grafted silica column. Overall, PNIPAAm-based temperature-responsive chromatography represents a remarkably simple, versatile, and environmentally friendly bioanalytical method for CYP substrates and their metabolites.
AB - High-performance liquid chromatography (HPLC) is the most common analytical method practiced in various fields and used for analysis of almost all drug compounds in the pharmaceutical industries. During drug development, an evaluation of potential drug interaction with cytochrome P450 (CYP) is essential. A “cocktail” approach is often used in drug development to evaluate the effect of a drug candidate on multiple CYP enzymes in a single experiment. So far, simultaneous analysis of multiple CYP substrates, which have greatly different structure and physicochemical properties, has required organic solvents and mobile phase gradient methods. However, despite the recent emphasis on environmental protection, analytical methods that use only aqueous solvents without the use of organic solvents for separation have not been studied well. This study sought to develop the simultaneous analysis of multiple CYP substrates by using poly(N-isopropylacrylamide) (PNIPAAm)-based temperature-responsive chromatography with only aqueous solvents and isocratic methods. Good separation of multiple CYP substrates was achieved without using organic solvents and any gradient methods by temperature-responsive chromatography utilizing a P(NIPAAm-co-n-butyl methacrylate (BMA))- and P(NIPAAm-co-N-acryloyl L-tryptophan methyl ester (L-Trp-OMe))-grafted silica column. Overall, PNIPAAm-based temperature-responsive chromatography represents a remarkably simple, versatile, and environmentally friendly bioanalytical method for CYP substrates and their metabolites.
UR - http://www.scopus.com/inward/record.url?scp=85085897302&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085897302&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-65270-z
DO - 10.1038/s41598-020-65270-z
M3 - Article
C2 - 32483226
AN - SCOPUS:85085897302
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 8828
ER -