Growing Process of Communities on Data Platforms: Case Analysis of a COVID-19 Dataset

Teruaki Hayashi, Takumi Shimizu, Yoshiaki Fukami, Hiroki Sakaji, Hiroyasu Matsushima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In recent years, there have been growing expectations for the creation of new businesses and the improvement of the value of existing services by exchanging data in different fields. Data stored in-house within organizations have become a new source of innovation. While there is a high need for the value creation of data, determining the data value is not an easy task, as there is a wide range of factors to be considered, such as data pricing, acquisition cost, usage value, and update frequency. In this study, we observe communication, such as the sharing of know-hows in data exchange and analysis, and discuss the growing process of a community on the data platform. For the experiment, we focused on the data community in the COVID-19 disaster and used a unique dataset from the data platform Kaggle, which is the data analysis competition service. The results suggest that user actions differ in the discussion of the dataset and analysis. Moreover, providing topics, user participation, and activating actions in the early stages after the dataset is released are essential for forming a data community. We argue that the actions on the data analysis, such as comments and votes, are also crucial for fostering a common understanding of the data value.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021
EditorsYixin Chen, Heiko Ludwig, Yicheng Tu, Usama Fayyad, Xingquan Zhu, Xiaohua Tony Hu, Suren Byna, Xiong Liu, Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, Carlos Ordonez
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3466-3471
Number of pages6
ISBN (Electronic)9781665439022
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Conference on Big Data, Big Data 2021 - Virtual, Online, United States
Duration: 2021 Dec 152021 Dec 18

Publication series

NameProceedings - 2021 IEEE International Conference on Big Data, Big Data 2021

Conference

Conference2021 IEEE International Conference on Big Data, Big Data 2021
Country/TerritoryUnited States
CityVirtual, Online
Period21/12/1521/12/18

Keywords

  • case analysis
  • data ecosystem
  • data exchange
  • data marketplace
  • online community

ASJC Scopus subject areas

  • Information Systems and Management
  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Information Systems

Fingerprint

Dive into the research topics of 'Growing Process of Communities on Data Platforms: Case Analysis of a COVID-19 Dataset'. Together they form a unique fingerprint.

Cite this