Guanine nucleotide exchange factor DOCK11-binding peptide fused with a single chain antibody inhibits hepatitis B virus infection and replication

Mayuko Ide, Noriko Tabata, Yuko Yonemura, Takayoshi Shirasaki, Kazuhisa Murai, Ying Wang, Atsuya Ishida, Hikari Okada, Masao Honda, Shuichi Kaneko, Nobuhide Doi, Satoru Ito, Hiroshi Yanagawa

Research output: Contribution to journalArticlepeer-review

Abstract

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.

Original languageEnglish
Article number102097
JournalJournal of Biological Chemistry
Volume298
Issue number7
DOIs
Publication statusPublished - 2022 Jul

Keywords

  • DOCK11
  • IVV method
  • anti-HBV peptide drug
  • antibody engineering
  • drug delivery
  • fusion protein
  • hepatitis B virus
  • peptide drug delivery
  • peptide transport

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Guanine nucleotide exchange factor DOCK11-binding peptide fused with a single chain antibody inhibits hepatitis B virus infection and replication'. Together they form a unique fingerprint.

Cite this