Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids

Junki Miyamoto, Miki Igarashi, Keita Watanabe, Shin ichiro Karaki, Hiromi Mukouyama, Shigenobu Kishino, Xuan Li, Atsuhiko Ichimura, Junichiro Irie, Yukihiko Sugimoto, Tetsuya Mizutani, Tatsuya Sugawara, Takashi Miki, Jun Ogawa, Daniel J. Drucker, Makoto Arita, Hiroshi Itoh, Ikuo Kimura

Research output: Contribution to journalArticlepeer-review

149 Citations (Scopus)

Abstract

Gut microbiota mediates the effects of diet, thereby modifying host metabolism and the incidence of metabolic disorders. Increased consumption of omega-6 polyunsaturated fatty acid (PUFA) that is abundant in Western diet contributes to obesity and related diseases. Although gut-microbiota-related metabolic pathways of dietary PUFAs were recently elucidated, the effects on host physiological function remain unclear. Here, we demonstrate that gut microbiota confers host resistance to high-fat diet (HFD)-induced obesity by modulating dietary PUFAs metabolism. Supplementation of 10-hydroxy-cis-12-octadecenoic acid (HYA), an initial linoleic acid-related gut-microbial metabolite, attenuates HFD-induced obesity in mice without eliciting arachidonic acid-mediated adipose inflammation and by improving metabolic condition via free fatty acid receptors. Moreover, Lactobacillus-colonized mice show similar effects with elevated HYA levels. Our findings illustrate the interplay between gut microbiota and host energy metabolism via the metabolites of dietary omega-6-FAs thereby shedding light on the prevention and treatment of metabolic disorders by targeting gut microbial metabolites.

Original languageEnglish
Article number4007
JournalNature communications
Volume10
Issue number1
DOIs
Publication statusPublished - 2019 Dec 1

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids'. Together they form a unique fingerprint.

Cite this