Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts

Soshiro Ogata, Misa Takegami, Taira Ozaki, Takahiro Nakashima, Daisuke Onozuka, Shunsuke Murata, Yuriko Nakaoku, Koyu Suzuki, Akihito Hagihara, Teruo Noguchi, Koji Iihara, Keiichi Kitazume, Tohru Morioka, Shin Yamazaki, Takahiro Yoshida, Yoshiki Yamagata, Kunihiro Nishimura

Research output: Contribution to journalArticlepeer-review

Abstract

This study aims to develop and validate prediction models for the number of all heatstroke cases, and heatstrokes of hospital admission and death cases per city per 12 h, using multiple weather information and a population-based database for heatstroke patients in 16 Japanese cities (corresponding to around a 10,000,000 population size). In the testing dataset, mean absolute percentage error of generalized linear models with wet bulb globe temperature as the only predictor and the optimal models, respectively, are 43.0% and 14.8% for spikes in the number of all heatstroke cases, and 37.7% and 10.6% for spikes in the number of heatstrokes of hospital admission and death cases. The optimal models predict the spikes in the number of heatstrokes well by machine learning methods including non-linear multivariable predictors and/or under-sampling and bagging. Here, we develop prediction models whose predictive performances are high enough to be implemented in public health settings.

Original languageEnglish
Article number4575
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts'. Together they form a unique fingerprint.

Cite this